精英家教网 > 高中数学 > 题目详情
已知向量
a
=(x,2),
b
=(-3,-5),
a
b
的夹角为钝角,则x的取值范围为
 
考点:数量积表示两个向量的夹角
专题:平面向量及应用
分析:由题意可得
a
b
<0,且
a
 与
b
不共线,可得 
-3x-10<0
-5x≠-6
,由此求得x的范围.
解答: 解:∵向量
a
=(x,2),
b
=(-3,-5),
a
b
的夹角为钝角,∴
a
b
<0,且
a
 与
b
不共线,
所以有
-3x-10<0
-5x≠-6
,解之x∈(-
10
3
,-
6
5
)∪(
6
5
,+∞),
故答案为:(-
10
3
,-
6
5
)∪(
6
5
,+∞).
点评:本题主要考查用两个向量的数量积表示两个向量的夹角,两个向量共线的性质,两个向量坐标形式的运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,在平面直角坐标系中,点O为坐标原点,直线y=-x+4与x轴交与点A,过点A的抛物线y=ax2+bx与直线y=-x+4交与另一点B,B的横坐标为1.
(1)点C为抛物线的顶点,点D为直线AB上一点,点E为该抛物线上一点,且D、E两点的纵坐标都为1,求△CDE面积.
(2)如图2,P为直线AB上方的抛物线上一点(点P不与点A、B重合),PM⊥x轴于点M,交线段AB于点F,PN∥AB,交x轴于点N,过点F作FG∥x轴,交PN于点G,设点M的坐标为(m,0),FG的长度为d,求d与m之间的函数关系式及FG长度的最大值,且求出此时P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1,AA1=2,E,F分别为棱CC1,BB1的中点.
(1)求三棱锥E-ABC的体积.
(2)求证:平面AFC∥平面B1DE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,且a1=2,a1+a2+a5=12.
(1)求数列{an}的通项公式;
(2)令bn=an+2n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=loga(x+3)-1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n均大于0,则
1
m
+
2
n
的最小值为(  )
A、2B、4C、8D、16

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x+1
-
1-x
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+4x+2,若对于?x∈[1,2]不等式f(x)-m>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆2x2+3y2=6的焦距是(  )
A、2
B、2(
3
-
2
C、2
5
D、2(
3
+
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为了倡导居民节约水资源,自来水实行分段收费.收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,已知甲、乙两用户某月用水量为5:3.
(1)设甲用户用水量为5x,求该月甲、乙两户共交水费y元关于x的函数;
(2)若甲、乙两户该月共交水费26.4元,求出甲、乙两户该月的用水量和水费.

查看答案和解析>>

同步练习册答案