精英家教网 > 高中数学 > 题目详情
(2012•东城区二模)已知函数f(x)=
|x|-sinx+1|x|+1
(x∈R)的最大值为M,最小值为m,则M+m=
2
2
分析:先把函数f(x)=
|x|-sinx+1
|x|+1
变形为f(x)=1+
-sinx
|x|+1
,令g(x)=
-sinx
|x|+1
,,可判断函数g(x)的奇偶性,据此找到
g(x)的最大值与最小值之间的关系,在有f(x)=1+g(x),求出f(x)的最大值与最小值之和.
解答:解:函数f(x)=
|x|-sinx+1
|x|+1
可变形为f(x)=1+
-sinx
|x|+1

g(x)=
-sinx
|x|+1
,,则g(-x)=
sinx
|x|+1
=-g(x),
∴g(x)为奇函数.
设当x=a时g(x)有最大值g(a),则当x=-a时,g(x)有最小值g(-a)=-g(a)
∵f(x)=1+g(x),
∴当x=a时f(x)有最大值g(a)+1,则当x=-a时,g(x)有最小值-g(a)+1
即M=g(a)+1,m=-g(a)+1,
∴M+m=2
故答案为2
点评:本题主要考查利用函数的奇偶性求函数的最大值与最小值,因为f(x)不具有奇偶性,可以通过变形,使f(x)变为一个奇函数加上一个常数的形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东城区二模)定义:F(x,y)=yx(x>0,y>0),已知数列{an}满足:An=
F(n,2)
F(2,n)
(n∈N+),若对任意正整数n,都有an≥ak(k∈N*成立,则ak的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)已知函数f(x)=-
12
x2+2x-aex

(Ⅰ)若a=1,求f(x)在x=1处的切线方程;
(Ⅱ)若f(x)在R上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)已知函数f(x)=x
1
2
,给出下列命题:
①若x>1,则f(x)>1;
②若0<x1<x2,则f(x2)-f(x1)>x2-x1
③若0<x1<x2,则x2f(x1)<x1f(x2);
④若0<x1<x2,则
f(x1)+f(x2)
2
<f(
x1+x2
2
)

其中,所有正确命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)已知函数f(x)=(a+
1
a
)lnx+
1
x
-x(a>1).
(l)试讨论f(x)在区间(0,1)上的单调性;
(2)当a∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1)),Q(x2,f (x2 )),使得曲线y=f(x)在点P,Q处的切线互相平行,求证:x1+x2
6
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区二模)设M(x0,y0)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,则x0的取值范围是(  )

查看答案和解析>>

同步练习册答案