ÒÑÖªµã£¨n£¬an£©£¨n¡ÊN*£©ÔÚº¯Êýf£¨x£©=-6x-2µÄͼÏóÉÏ£¬ÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£®
£¨¢ñ£©ÇóSn£»
£¨¢ò£©Éècn=an+8n+3£¬ÊýÁÐ{dn}Âú×ãd1=c1£¬dn+1=cdn£¨n¡ÊN*£©£®ÇóÊýÁÐ{dn}µÄͨÏʽ£»
£¨¢ó£©Éèg£¨x£©ÊǶ¨ÒåÔÚÕýÕûÊý¼¯Éϵĺ¯Êý£¬¶ÔÓÚÈÎÒâµÄÕýÕûÊýx1¡¢x2£¬ºãÓÐg£¨x1x2£©=x1g£¨x2£©+x2g£¨x1£©³ÉÁ¢£¬ÇÒg£¨2£©=a£¨aΪ³£Êý£¬ÇÒa¡Ù0£©£¬¼Çbn=
g(
dn+1
2
)
dn+1
£¬ÊÔÅжÏÊýÁÐ{bn}ÊÇ·ñΪµÈ²îÊýÁУ¬²¢ËµÃ÷ÀíÓÉ£®
£¨¢ñ£©ÓÉÒÑÖªan=-6n-2£¬¹Ê{an}ÊÇÒÔa1=-8ΪÊ×Ï²îΪ-6µÄµÈ²îÊýÁУ®
ËùÒÔSn=-3n2-5n£®
£¨¢ò£©ÒòΪcn=an+8n+3=-6n-2+8n+3=2n+1£¨n¡ÊN*£©£¬dn+1=cdn=2dn+1£¬Òò´Ëdn+1+1=2£¨dn+1£©£¨n¡ÊN*£©£®
ÓÉÓÚd1=c1=3£¬
ËùÒÔ{dn+1}ÊÇÊ×ÏîΪd1+1=4£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ®
¹Êdn+1=4¡Á2n-1=2n+1£¬ËùÒÔdn=2n+1-1£®
£¨¢ó£©½â·¨Ò»£ºg(
dn+1
2
)=g(2n)=2n-1g(2)+2g(2n-1)
£¬
Ôòbn=
2n-1g(2)+2g(2n-1)
2n+1
=
a
4
+
g(2n-1)
2n
£¬bn+1=
a
4
+
g(2n)
2n+1
.bn+1-bn=
g(2n)
2n+1
-
g(2n-1)
2n
=
2n-1a+2g(2n-1)
2n+1
-
g(2n-1)
2n
=
a
4
£®
ÒòΪaΪ³£Êý£¬ÔòÊýÁÐ{bn}ÊǵȲîÊýÁУ®
½â·¨¶þ£ºÒòΪg£¨x1x2£©=x1g£¨x2£©+x2g£¨x1£©³ÉÁ¢£¬ÇÒg£¨2£©=a£¬
¹Êg(
dn+1
2
)=g(2n)=2n-1g(2)+2g(2n-1)
=2n-1g£¨2£©+2[2n-2g£¨2£©+2g£¨2n-2£©]=2¡Á2n-1g£¨2£©+22g£¨2n-2£©=2¡Á2n-1g£¨2£©+22[2n-3g£¨2£©+2g£¨2n-3£©]=3¡Á2n-1g£¨2£©+23g£¨2n-3£©¨T£¨n-1£©¡Á2n-1g£¨2£©+2n-1g£¨2£©=n•2n-1g£¨2£©=an•2n-1£¬
ËùÒÔbn=
g(
dn+1
2
)
dn+1
=
an•2n-1
2n+1
=
a
4
n
£®
Ôòbn+1-bn=
a
4
£®
ÓÉÒÑÖªaΪ³£Êý£¬Òò´Ë£¬ÊýÁÐ{bn}ÊǵȲîÊýÁУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµã£¨n£¬an£©£¨n¡ÊN*£©ÔÚº¯Êýf£¨x£©=-6x-2µÄͼÏóÉÏ£¬ÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£®
£¨¢ñ£©ÇóSn£»
£¨¢ò£©Éècn=an+8n+3£¬ÊýÁÐ{dn}Âú×ãd1=c1£¬dn+1=cdn£¨n¡ÊN*£©£®ÇóÊýÁÐ{dn}µÄͨÏʽ£»
£¨¢ó£©Éèg£¨x£©ÊǶ¨ÒåÔÚÕýÕûÊý¼¯Éϵĺ¯Êý£¬¶ÔÓÚÈÎÒâµÄÕýÕûÊýx1¡¢x2£¬ºãÓÐg£¨x1x2£©=x1g£¨x2£©+x2g£¨x1£©³ÉÁ¢£¬ÇÒg£¨2£©=a£¨aΪ³£Êý£¬ÇÒa¡Ù0£©£¬¼Çbn=
g(
dn+1
2
)
dn+1
£¬ÊÔÅжÏÊýÁÐ{bn}ÊÇ·ñΪµÈ²îÊýÁУ¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

1¡¢ÒÑÖªµã£¨n£¬an£©£¨n¡ÊN*£©¶¼ÔÚÖ±Ïß3x-y-24=0ÉÏ£¬ÄÇôÔÚÊýÁÐanÖÐÓÐa7+a9=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµã£¨n£¬an£©£¨n¡ÊN*£©ÔÚº¯Êýf£¨x£©=-2x-2µÄͼÏóÉÏ£¬ÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬ÇÒTnÊÇ6SnÓë8nµÄµÈ²îÖÐÏ
£¨1£©ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨2£©Éècn=bn+8n+3£¬ÊýÁÐ{dn}Âú×ãd1=c1£¬dn+1=cdn£¨n¡ÊN*£©£®ÇóÊýÁÐ{dn}µÄÇ°nÏîºÍDn£»
£¨3£©Éèg£¨x£©ÊǶ¨ÒåÔÚÕýÕûÊý¼¯Éϵĺ¯Êý£¬¶ÔÓÚÈÎÒâµÄÕýÕûÊýx1£¬x2£¬ºãÓÐg£¨x1x2£©=x1g£¨x2£©+x2g£¨x1£©³ÉÁ¢£¬ÇÒg£¨2£©=a£¨aΪ³£Êý£¬a¡Ù0£©£¬ÊÔÅжÏÊýÁÐ{
g(
dn+1
2
)
dn+1
}
ÊÇ·ñΪµÈ²îÊýÁУ¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµã £¨n£¬an£©ÔÚÖ±Ïßy=2xÉÏ£¬ÔòÊýÁÐ{an}£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö±Ïßl1¹ý£¨1£¬0£©µã£¬ÇÒl1¹ØÓÚÖ±Ïßy=x¶Ô³ÆÖ±ÏßΪl2£¬ÒÑÖªµãA(n£¬
an+1an
)
£¨n¡ÊN+£©ÔÚl2ÉÏ£¬a1=1£¬µ±n¡Ý2ʱ£¬an+1an-1=anan-1+an2£®
£¨¢ñ£©Çól2µÄ·½³Ì£»
£¨¢ò£©Çó{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸