【题目】以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,已知曲线 : ,点 的极坐标为 ,直线 的极坐标方程为 ,且点 在直线 上.
(1)求曲线 的极坐标方程和直线 的直角坐标方程;
(2)设 向左平移 个单位长度后得到 , 到 的交点为 , ,求 的长.
科目:高中数学 来源: 题型:
【题目】通过随机调查询问110名性别不同的高中生是否爱好某项运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由 计算得
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
C.有99%以上的把握认为“爱好该项运动与性别无关”
D.有99%以上的把握认为“爱好该项运动与性别有关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,,,F分别为AB,PC的中点.
(I)若四棱锥P-ABCD的体积为4,求PA的长;
(II)求证:PE⊥BC;
(III)求PC与平面PAD所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足:,,且(n=1,2,...).记
集合.
(1)(Ⅰ)若,写出集合M的所有元素;
(2)(Ⅱ)若集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;
(3)(Ⅲ)求集合M的元素个数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人参加普法知识竞赛,共有5个不同题目,选择题3个,判断题2个,甲、乙两人各抽一题.
(1)求甲抽到判断题,乙抽到选择题的概率是多少;
(2)求甲、乙两人中至少有一人抽到选择题的概率是多少.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论正确的个数是( )
①若正实数满足,则的最小值是16;
②已知,则函数的最大值为;
③已知,且,则的最小值是36;
④若对任意实数,不等式恒成立,则实数的取值范围是。
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com