精英家教网 > 高中数学 > 题目详情
已知
a
=(sinx,cosx+1),
b
=(cosx,cosx-1),f(x)=
a
b
(x∈R)
(1)求函数f(x)的最小正周期和单调区间;
(2)若x∈[-
π
6
π
2
]
,求函数f(x)的最值及相应的x的值.
分析:(1)利用数量积公式求出函数f(x),然后利用三角公式进行化简,利用三角函数的性质求f(x)的最小正周期和单调区间;
(2)利用三角函数的性质求函数f(x)的最值及相应的x的值.
解答:解:(1)f(x)=
a
b
=(sinx,cosx+1)•(cosx,cosx-1)=sinxcosx+cos2x-1=
1
2
sinx2x+
1
2
cos2x-
1
2
=
2
2
sin(2x+
π
4
)-
1
2

∴函数f(x)的最小正周期T=
2
=π.
-
π
2
+2kπ≤2x+
π
4
π
2
+2kπ
,解得-
3
8
π+kπ≤x≤
π
8
+kπ,k∈Z

π
2
+2kπ≤2x+
π
4
2
+2kπ
,解得
π
8
+kπ≤x≤
8
+kπ
,k∈Z,
即单调递增区间:[-
8
+kπ,
π
8
+kπ
],k∈Z
单调递减区间:[
π
8
+kπ,+
8
+kπ
],k∈Z.
(2)若x∈[-
π
6
π
2
]
,则2x+
π
4
∈[-
π
12
4
]

∴sin(2x+
π
4
∈[-
2
2
,1]

∴f(x)=
2
2
sin(2x+
π
4
)-
1
2
∈[-1,
2
-1
2
]

即f(x)的最大值是
2
-1
2
,此时x=
π
8

f(x)的最小值是-1,此时x=
π
2
点评:本题主要考查数量积的公式以及三角函数的图象和性质,考查学生的运算能力.要求熟练掌握三角函数的图象和性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(cosx+sinx,sinx),
b
=(cosx-sinx,2cosx)
,设f(x)=
a
b

(1)求函数f(x)的最小正周期,并写出f(x)的减区间;
(2)当x∈[0,
π
2
]
时,求函数f(x)的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx+2cosx,3cosx),
b
=(sinx,cosx),且f(x)=
a
b

(1)求函数f(x)的最大值;
(2)求函数f(x)在[0,π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,
3
4
),
b
=(cos(x+
π
3
),1)函数f(x)=
a
b

(1)求f(x)的最值和单调递减区间;
(2)已知在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=0,a=
3
,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都一模)已知
a
=(cosx+sinx, sinx), 
b
=(cosx-sinx, 2cosx)
,设f(x)=
a
b

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[-
π
4
π
4
]
时,求函数f(x)的最大值及最小值.

查看答案和解析>>

同步练习册答案