精英家教网 > 高中数学 > 题目详情

(文)已知:函数f(x)=  (a>1) 

   (1) 证明:函数f(x)在(-1,+∞ )上为增函数;

   (2)证明方程f(x)=0没有负根.

 

【答案】

见解析。

【解析】(I)利用函数的单调性证明即可:第一步:取值,第二步作差比较,判断差值的符号,第三步得到结论.

(2)本小题不易直接证明可采用反证法,先假设方程有负根x0 (x0≠-1),则有= -1,然后研究-1的值总是负值,所以得到矛盾,问题得证.

(文)证明:(1) 设-1<x­1<x2<+∞

f(x1)-f(x2) =- +  -  

=-+          (4)

 ∵  -1<x1<x2 ,a>0

 ∴  -<0     <0

 ∴  f(x1)-f(x2)<0  即  f(x1)<f(x2) ,函数f(x)在(-1,+∞ )上为增函数.       (6)

 (2)  若方程有负根x0 (x0≠-1),则有= -1

   若  x0<-1 ,  -1<-1   而 >0    故   -1           (10)

   若 -1<x0<0 ,   -1>2    而 <a0=1   ≠ -1

综上所述,方程f(x)=0没有负根.                           (12)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(文)已知函数f(x)=x3+ax2+bx+2与直线4x-y+5=0切于点P(-1,1).
(Ⅰ)求实数a,b的值;
(Ⅱ)若x>0时,不等式f(x)≥mx2-2x+2恒成立,求实数m的取值范围.

(理) 已知正四棱柱ABCD-A1B1C1D1底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交线段B1C于点F.以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系D-xyz,如图.
(Ⅰ)求证:A1C⊥平面BED;
(Ⅱ)求A1B与平面BDE所成角的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=2x-1的反函数为f-1(x),g(x)=log4(3x+1)
(1)f-1(x);
(2)用定义证明f-1(x)在定义域上的单调性;
(3)若f-1(x)≤g(x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=ax3-bx2+9x+2,若f(x)在x=1处的切线方程是3x+y-6=0.
(1)求f(x)的解析式及单调区间;
(2)若对于任意的x∈[
14
,2]
,都有f(x)≥t2-2t-1成立,求函数g(t)=t2+t-2的最小值及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)(文) 已知函数f(x)=
3
sin4x
cos2x
-4sin2x.
(1)求函数f(x)的定义域和最大值;  
(2)求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=
aa2-2
(ax-a-x)
(a>0,a≠1).
(1)判断f(x)的奇偶性;
(2)若f(x)在R上是单调递增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案