精英家教网 > 高中数学 > 题目详情
(2012•江苏三模)已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.
(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围;
(2)解关于x的方程f(x)=|f′(x)|;
(3)设函数g(x)=
f(x),f(x)≥f(x)
f(x),f(x)<f(x)
,求g(x)在x∈[2,4]时的最小值.
分析:(1)根据f(x)≤f'(x),可得x2-2x+1≤2a(1-x),分离参数,确定右边函数的最大值,即可求a的取值范围;
(2)由f(x)=|f'(x)|,可得|x+a|=1+a或|x+a|=1-a,再分类讨论,即可得到结论;
(3)由f(x)-f'(x)=(x-1)[x-(1-2a)],g(x)=
f′(x),f(x)≥f′(x)
f(x),f(x)<f′(x)
,对a进行分类讨论,即可确定g(x)在x∈[2,4]时的最小值.
解答:解:(1)因为f(x)≤f'(x),所以x2-2x+1≤2a(1-x),
又因为-2≤x≤-1,所以a≥
x2-2x+1
2(1-x)
在x∈[-2,-1]时恒成立,
因为
x2-2x+1
2(1-x)
=
1-x
2
3
2
,所以a≥
3
2
.…(4分)
(2)因为f(x)=|f'(x)|,所以x2+2ax+1=2|x+a|,
所以(x+a)2-2|x+a|+1-a2=0,则|x+a|=1+a或|x+a|=1-a. …(7分)
①当a<-1时,|x+a|=1-a,所以a>b>c或x=1-2a;
②当-1≤a≤1时,|x+a|=1-a或|x+a|=1+a,所以x=±1或x=1-2a或x=-(1+2a);
③当a>1时,|x+a|=1+a,所以x=1或x=-(1+2a).…(10分)
(3)因为f(x)-f'(x)=(x-1)[x-(1-2a)],g(x)=
f′(x),f(x)≥f′(x)
f(x),f(x)<f′(x)

①若a≥-
1
2
,则x∈[2,4]时,f(x)≥f'(x),所以g(x)=f'(x)=2x+2a,
从而g(x)的最小值为g(2)=2a+4;            …(12分)
②若a<-
3
2
,则x∈[2,4]时,f(x)<f'(x),所以g(x)=f(x)=x2+2ax+1,
-2≤a<-
3
2
时,g(x)的最小值为g(2)=4a+5,
当-4<a<-2时,g(x)的最小值为g(-a)=1-a2
当a≤-4时,g(x)的最小值为g(4)=8a+17.…(14分)
③若-
3
2
≤a<-
1
2
,则x∈[2,4]时,g(x)=
x2+2ax+1,x∈[2,1-2a)
2x+2a,x∈[1-2a,4]

当x∈[2,1-2a)时,g(x)最小值为g(2)=4a+5;
当x∈[1-2a,4]时,g(x)最小值为g(1-2a)=2-2a.
因为-
3
2
≤a<-
1
2
,(4a+5)-(2-2a)=6a+3<0,
所以g(x)最小值为4a+5.
综上所述,[g(x)]min=
8a+17,a≤-4
1-a2,-4<a<-2
4a+5,-2≤a<-
1
2
2a+4,a≥-
1
2
…(16分)
点评:本题考查导数知识的运用,考查函数的最值,考查恒成立问题,考查分类讨论的数学思想,正确分类是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏三模)如图,在平面直角坐标系xoy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.
(1)求点B的轨迹方程;
(2)当D位于y轴的正半轴上时,求直线PQ的方程;
(3)若G是圆上的另一个动点,且满足FG⊥FE.记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)若数列{an}为等差数列,求证:3A-B+C=0;
(2)若A=-
1
2
,B=-
3
2
,C=1
,设bn=an+n,数列{nbn}的前n项和为Tn,求Tn
(3)若C=0,{an}是首项为1的等差数列,设P=
2012
i=1
1+
1
a
2
i
+
1
a
2
i+1
,求不超过P的最大整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)在平面直角坐标系中,不等式组
y≥0
x-2y≥0
x+y-3≤0
表示的区域为M,t≤x≤t+1表示的区域为N,若1<t<2,则M与N公共部分面积的最大值为
5
6
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)假定某人每次射击命中目标的概率均为
12
,现在连续射击3次.
(1)求此人至少命中目标2次的概率;
(2)若此人前3次射击都没有命中目标,再补射一次后结束射击;否则.射击结束.记此人射击结束时命中目标的次数为X,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏三模)已知数列{an}满足a1=2,且对任意n∈N*,恒有nan+1=2(n+1)an
(1)求数列{an}的通项公式;
(2)设区间[
an
3n
an+1
3(n+1)
]
中的整数个数为bn,求数列{bn}的通项公式.

查看答案和解析>>

同步练习册答案