精英家教网 > 高中数学 > 题目详情
3.在△ABC中,a、b、c分别是角A、B、C的对边.若$\frac{sinC}{sinA}$=2,b2-a2=3ac,则∠B=(  )
A.30°B.60°C.120°D.150°

分析 由$\frac{sinC}{sinA}$=2,利用正弦定理可得:c=2a,又b2-a2=3ac,可得b2=7a2.再利用余弦定理即可得出.

解答 解:在△ABC中,∵$\frac{sinC}{sinA}$=2,∴c=2a,
又b2-a2=3ac,∴b2=a2+3a×2a=7a2
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+4{a}^{2}-7{a}^{2}}{2a×2a}$=$-\frac{1}{2}$,
∵B∈(0,180°).
则∠B=120°.
故选:C.

点评 本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知P是正方形ABCD所在平面外一点,PA⊥平面ABCD,且AB=PA,求:二面角P-BD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.阅读如图所示程序框图,若输入的x=3,则输出的y的值为(  )
A.24B.25C.30D.40

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在下列各组向量中,可以作为基底的是(  )
A.$\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(3,2)B.$\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(3,-2)
C.$\overrightarrow{{e}_{1}}$=(6,4),$\overrightarrow{{e}_{2}}$=(3,2)D.$\overrightarrow{{e}_{1}}$=(-2,5),$\overrightarrow{{e}_{2}}$=(2,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.明代程大位《算法统宗》卷10中有题:“远望巍巍塔七层,红灯点点倍加增,共灯三百八十一,请问尖头儿盏灯?”你的答案是(  )
A.2盏B.3盏C.4盏D.7盏

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在(1-x)11的展开式中系数最大的是第7项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知F是抛物线y2=2px(p>0)的焦点,O为抛物线的顶点,准线与x轴的交点为M,点N在抛物线上.
(1)求直线MN的斜率的取值范围,记λ=$\frac{{|{MN}|}}{{|{NF}|}}$,求λ的取值范围;
(2)过点N的抛物线的切线交x轴于点P,则xN+xP是否为定值?
(3)在给定的抛物线上过已知定点P,给出用圆规与直尺作过点P的切线的作法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.证明对数的换底公式logab=$\frac{lo{g}_{c}b}{lo{g}_{c}a}$(a>0,且a≠1,c>0,且c≠1,b>0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知样本数据如表所示,若y与x线性相关,且回归方程为$\widehaty=\widehatbx+\frac{13}{2}$,则$\widehatb$=$-\frac{1}{2}$.
x234
y645

查看答案和解析>>

同步练习册答案