精英家教网 > 高中数学 > 题目详情
20.在△ABC中,c=6,a=4,B=120°,则b等于(  )
A.76B.$2\sqrt{19}$C.27D.$2\sqrt{7}$

分析 由已知利用余弦定理即可得解.

解答 解:∵c=6,a=4,B=120°,
∴由余弦定理可得:b2=a2+c2-2accosB=16+36-2×4×6×cos120°=76,
∴解得:b=2$\sqrt{19}$,
故选:B.

点评 本题主要考查了余弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知集合M,若a∈M,则$\frac{a+1}{a-1}$∈M,则称a为集合M的“亮点”,若M={x∈Z|$\frac{4}{4-x}$≥1},则集合M中的“亮点”共有(  )
A.2个B.3个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\sqrt{{(\frac{1}{4})}^{-x}-{3•2}^{x}-4}$的定义域为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.lg25+$\frac{2}{3}$lg8+lg5•lg20+lg22.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={x|x-1≥2},B={y|y=ax2-2x+5,x∈R},若A∪B=B,则实数a的取值集合为{a|0$<a≤\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)若函数y=f(x)为奇函数并且图象关于直线x=a(a≠0)对称,求证:函数y=f(x)是以4a为周期的函数.
(2)请对(1)中求证的命题进行推广,写出一个真命题,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求证:在等差数列中,若Sm=p,Sp=m(m≠p),则Sm+p=-(m+p)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,已知C=120°,AB=2$\sqrt{3}$,AC=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f:(0,1)→R且f(x)=$\left\{\begin{array}{l}{x,x∈Q}\\{\frac{p+1}{q},x=\frac{p}{q},(p,q)=1,0<p<q}\end{array}\right.$,当x∈($\frac{7}{8}$,$\frac{8}{9}$)时,试求f(x)的最大值.

查看答案和解析>>

同步练习册答案