设函数,曲线通过点(0,2a+3),且在处的切线垂直于y轴.
(I)用a分别表示b和c;
(II)当bc取得最大值时,写出的解析式;
(III)在(II)的条件下,若函数g(x)为偶函数,且当时,,求当时g(x)的表达式,并求函数g(x)在R上的最小值及相应的x值.
(I)由已知可得,.
(II).
(III)时,的最大值是.
解析试题分析:(I)根据及导数的几何意义即得到的关系.
(II)将表示成,应用二次函数知识,当时,取到最大值,得到,从而得到.
(III)首先由函数 为偶函数,且当时,
得到当时,通过求导数并讨论时
时,时,的正负号,明确在区间是减函数,在是增函数,
肯定时,有最小值.
再根据为偶函数,得到时,也有最小值,
作出结论.
试题解析:(I)由已知可得
又因为.
(II),
所以当时,取到最大值,此时,
.
(III)因为,函数 为偶函数,且当时,
所以,当时,
此时,
当时,,当时,,
所以,在区间是减函数,在是增函数,
所以时,有最小值.
又因为为偶函数,故当时,也有最小值,
综上可知时,.
考点:二次函数的性质,导数的几何意义,应用导数研究函数的单调性、极值.
科目:高中数学 来源: 题型:解答题
设函数,若时,有极小值,
(1)求实数的取值;
(2)若数列中,,求证:数列的前项和;
(3)设函数,若有极值且极值为,则与是否具有确定的大小关系?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com