精英家教网 > 高中数学 > 题目详情

已知为实常数,函数.
(1)讨论函数的单调性;
(2)若函数有两个不同的零点
(Ⅰ)求实数的取值范围;
(Ⅱ)求证:.(注:为自然对数的底数)

(1)详见解析;(2),证明详见解析.

解析试题分析:本题主要考查导数的运算,利用导数研究函数的单调性、极值、最值以及不等式等基础知识,考查函数思想、分类讨论思想,考查综合分析和解决问题的能力.第一问,先对函数求导,由于函数有定义域,所以恒大于0,所以对进行讨论,当时,导数恒正,所以函数在上是增函数,当时,的根为,所以将定义域从断开,变成2部分,分别判断函数的单调性;第二问,(1)通过第一问的分析,只有当时,才有可能有2个零点,需要讨论函数图像的最大值的正负,当最大值小于等于0时,最多有一个零点,当最大值大于0时,还需要判断在最大值点两侧是否有纵坐标小于0的点,如果有就符合题意,(2)由(1)可知函数的单调性,只需判断出的正负即可,经过分析,因为,所以.只要证明:就可以得出结论,所以下面经过构造函数证明,只需求出函数的最值即可.
试题解析:(I)的定义域为.其导数.   1分
①当时,,函数在上是增函数;    2分
②当时,在区间上,;在区间上,
所以是增函数,在是减函数.     4分
(II)①由(I)知,当时,函数上是增函数,不可能有两个零点
时,是增函数,在是减函数,此时为函数的最大值,
时,最多有一个零点,所以,解得, 6分
此时,,且

,则,所以上单调递增,
所以,即
所以的取值范围是       8分
②证法一:
.设 . .
 时, ;当 时, ;
所以 上是增函数,在 上是减函数. 最大值为 .
由于 ,且 ,所以 ,所以.
下面证明:当时, .设 ,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数的单调区间和极值;
(Ⅱ)设函数图象上任意一点的切线的斜率为,当的最小值为1时,求此时切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为正整数,均为常数,曲线处的切线方程为.
(1)求的值;
(2)求函数的最大值;
(3)证明:对任意的都有.(为自然对数的底)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若处相切,试求的表达式;
(Ⅱ)若上是减函数,求实数的取值范围;
(Ⅲ)证明不等式:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,曲线通过点(0,2a+3),且在处的切线垂直于y轴.
(I)用a分别表示b和c;
(II)当bc取得最大值时,写出的解析式;
(III)在(II)的条件下,若函数g(x)为偶函数,且当时,,求当时g(x)的表达式,并求函数g(x)在R上的最小值及相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中,e是自然对数的底数).
(Ⅰ)若,试判断函数在区间上的单调性;
(Ⅱ)若,当时,试比较与2的大小;
(Ⅲ)若函数有两个极值点),求k的取值范围,并证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数.
(1)若恒成立,求实数的值;
(2)若方程有一根为,方程的根为,是否存在实数,使?若存在,求出所有满足条件的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a为实数,x=1是函数的一个极值点。
(Ⅰ)若函数在区间上单调递减,求实数m的取值范围;
(Ⅱ)设函数,对于任意,有不等式
恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小值;
(Ⅱ)求证:
(Ⅲ)对于函数定义域上的任意实数,若存在常数,使得都成立,则称直线为函数的“分界线”.设函数是否存在“分界线”?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案