精英家教网 > 高中数学 > 题目详情

设函数,其中为正整数,均为常数,曲线处的切线方程为.
(1)求的值;
(2)求函数的最大值;
(3)证明:对任意的都有.(为自然对数的底)

(1);(2);(3)详见解析.

解析试题分析:(1)利用点在切线上,求出的值,由切线方程求出切线的斜率,从而得到的值,再结合题干的条件列方程组求出的值;(2)利用导数求出极值,利用极值与最值的关系求出最大值;(3)证法1是利用分析法将问题等价转化为证明不等式,最后等价证明,利用换元法,构造新函数,只需证明不等式即可,利用导数,结合单调性进行证明;证法2是先构造新函数,证明在区间内成立,再令,得到,最终得到,再结合(2)中的结论得到.
试题解析:(1)由点在直线上,可得,即.  
.
切线的斜率为
(2)由(1)知,,故.
,解得,即上有唯一零点.
时,,故上单调递增;
时,,故单调递减.
上的最大值.
(3)证法1:要证对任意的都有,只需证
由(2)知在有最大值,,故只需证.
,即,①
,则,①即,②
,则
显然当时,,所以上单调递增,
,即对任意的②恒成立,
对任意的

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+ln xg(x)=ex.
(1)当a≤0时,求f(x)的单调区间;
(2)若不等式g(x)< 有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)设,求的最小值;
(Ⅱ)如何上下平移的图象,使得的图象有公共点且在公共点处切线相同.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(Ⅰ)当时,求的最小值;
(Ⅱ)若在区间上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅱ)设函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中是自然对数的底数.
(1)求函数的零点;
(2)若对任意均有两个极值点,一个在区间内,另一个在区间外,
的取值范围;
(3)已知且函数上是单调函数,探究函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知P()为函数图像上一点,O为坐标原点,记直线OP的斜率
(Ⅰ)求函数的单调区间;
(Ⅱ)设,求函数的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为实常数,函数.
(1)讨论函数的单调性;
(2)若函数有两个不同的零点
(Ⅰ)求实数的取值范围;
(Ⅱ)求证:.(注:为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数

(Ⅰ)若曲线处的切线相互平行,求的值及切线斜率;
(Ⅱ)若函数在区间上单调递减,求的取值范围;
(Ⅲ)设函数的图像C1与函数的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.

查看答案和解析>>

同步练习册答案