精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax+ln xg(x)=ex.
(1)当a≤0时,求f(x)的单调区间;
(2)若不等式g(x)< 有解,求实数m的取值范围.

(1)当a=0时,f(x)在(0,+∞)单调递增;当a<0时,f(x)在单调递增,在单调递减.(2)(-∞,0)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)当时,求曲线在点处的切线方程;
(2)讨论的单调性;
(3)若有两个极值点,记过点的直线的斜率为,问是否存在,使得?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=axn(1-x)+b(x>0),n为正整数,ab为常数.曲线yf(x)在(1,f(1))处的切线方程为xy=1.
(1)求ab的值;
(2)求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)函数f(x)在点(0,f(0))的切线与直线2xy-1=0平行,求a的值;
(2)当x∈[0,2]时,f(x)≥恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的极小值;
(2)当时,过坐标原点作曲线的切线,设切点为,求实数的值;
(3)设定义在上的函数在点处的切线方程为时,若内恒成立,则称为函数的“转点”.当时,试问函数是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(x+1)ln x-2x.
(1)求函数的单调区间;
(2)设h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中的函数图象在点处的切线平行于轴.
(1)确定的关系;    (2)若,试讨论函数的单调性;
(3)设斜率为的直线与函数的图象交于两点)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数的单调区间和极值;
(Ⅱ)设函数图象上任意一点的切线的斜率为,当的最小值为1时,求此时切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中为正整数,均为常数,曲线处的切线方程为.
(1)求的值;
(2)求函数的最大值;
(3)证明:对任意的都有.(为自然对数的底)

查看答案和解析>>

同步练习册答案