已知函数f(x)=ax+ln x,g(x)=ex.
(1)当a≤0时,求f(x)的单调区间;
(2)若不等式g(x)< 有解,求实数m的取值范围.
科目:高中数学 来源: 题型:解答题
已知函数,其中,
(1)当时,求曲线在点处的切线方程;
(2)讨论的单调性;
(3)若有两个极值点和,记过点的直线的斜率为,问是否存在,使得?若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=axn(1-x)+b(x>0),n为正整数,a,b为常数.曲线y=f(x)在(1,f(1))处的切线方程为x+y=1.
(1)求a,b的值;
(2)求函数f(x)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=.
(1)函数f(x)在点(0,f(0))的切线与直线2x+y-1=0平行,求a的值;
(2)当x∈[0,2]时,f(x)≥恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(1)当时,求函数的极小值;
(2)当时,过坐标原点作曲线的切线,设切点为,求实数的值;
(3)设定义在上的函数在点处的切线方程为当时,若在内恒成立,则称为函数的“转点”.当时,试问函数是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f(x)=(x+1)ln x-2x.
(1)求函数的单调区间;
(2)设h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,,其中的函数图象在点处的切线平行于轴.
(1)确定与的关系; (2)若,试讨论函数的单调性;
(3)设斜率为的直线与函数的图象交于两点()证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数,其中,为正整数,、、均为常数,曲线在处的切线方程为.
(1)求、、的值;
(2)求函数的最大值;
(3)证明:对任意的都有.(为自然对数的底)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com