精英家教网 > 高中数学 > 题目详情

已知函数
(1)当时,求函数的极小值;
(2)当时,过坐标原点作曲线的切线,设切点为,求实数的值;
(3)设定义在上的函数在点处的切线方程为时,若内恒成立,则称为函数的“转点”.当时,试问函数是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.

(1)  ;(2) ;(3)参考解析

解析试题分析:(1)因为函数时,求函数的极小值,即对函数求导通过求出极值点,即可求出极小值.
(2)过曲线外一点作曲线的切线,是通过求导得到切线的斜率等于切点与这点斜率.建立一个等式,从而确定切点横坐标的大小,由于该方程不能直接求解,所以通过估算一个值,在证明该函数的单调性,即可得到切点的横坐标.
(3)因为根据定义在上的函数在点处的切线方程为时,若内恒成立,则称为函数的“转点”.该定义等价于切线穿过曲线,在的两边的图像分别在的上方和下方恒成立.当时,通过讨论函数的单调性即最值即可得结论.
试题解析:(1)当时,
时,;当;当.
所以当时,取到极小值.
(2),所以切线的斜率
整理得,显然是这个方程的解,
又因为上是增函数,
所以方程有唯一实数解,故.
(3)当时,函数在其图象上一点处的切线方程为

,则
上单调递减,
所以当,此时
所以上不存在“转点”.
时,上单调递减,所以当时, ,此时
所以上不存在“转点”.
,即上是增函数,
时,
时,, 即点为“转点”,
故函数存在“转点”,且是“转点”的横坐标.
考点:1.函数极值.2.函数的切线问题.3.新定义的问题.4.数形结合的思想.5.运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+xsinx+cosx.
(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;
(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax3x2cxd(acd∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求acd的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=exax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处存在极值.
(1)求实数的值;
(2)函数的图像上存在两点A,B使得是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在轴上,求实数的取值范围;
(3)当时,讨论关于的方程的实根个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+ln xg(x)=ex.
(1)当a≤0时,求f(x)的单调区间;
(2)若不等式g(x)< 有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(ax2bxc)exf(0)=1,f(1)=0.
(1)若f(x)在区间[0,1]上单调递减,求实数a的取值范围;
(2)当a=0时,是否存在实数m使不等式2f(x)+4xexmx+1≥-x2+4x+1对任意x∈R恒成立?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的单调区间;
(2)设函数,若当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅱ)设函数,求证:

查看答案和解析>>

同步练习册答案