精英家教网 > 高中数学 > 题目详情

已知a为实数,x=1是函数的一个极值点。
(Ⅰ)若函数在区间上单调递减,求实数m的取值范围;
(Ⅱ)设函数,对于任意,有不等式
恒成立,求实数的取值范围.

(Ⅰ); (Ⅱ)

解析试题分析:(Ⅰ)由于x=1是函数的极值点,所以可以求出.即通过求导可以知道函数的单调递减区间(1,5).又由于函数在区间上单调递减.所以区间 是区间(1,5)的子区间.即可得m的取值范围.
(Ⅱ)由不等式
恒成立.所以要先求出的最大值.即函数f(x)最大值与最小值相减的绝对值.另外的求出g(x)的最小值再解不等式.即可求得结论.本题的综合性较强,要理解清楚题意才能完整解答.
试题解析:.(Ⅰ).首先x>0.得.令.即f(x)的单调递减区间是(1,5).因为f(x)在区间(2m-1,m+1)上单调递减.所以(2m-1,m+1) (1,5).所以.
(Ⅱ)由(1)..列表如下:
..所以.所以恒成立等价于恒成立.因为.当且仅当时取等号.所以.所以.所以.
考点:1.函数求导.2.不等式恒成立的问题.3.单调性问题.4.绝对值的处理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知,函数
(Ⅰ)当时,求的最小值;
(Ⅱ)若在区间上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为实常数,函数.
(1)讨论函数的单调性;
(2)若函数有两个不同的零点
(Ⅰ)求实数的取值范围;
(Ⅱ)求证:.(注:为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中,曲线在点处的切线垂直于轴.
(Ⅰ)求的值;
(Ⅱ)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,若时,有极小值
(1)求实数的取值;
(2)若数列中,,求证:数列的前项和
(3)设函数,若有极值且极值为,则是否具有确定的大小关系?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
(Ⅰ) 当,求函数的单调递增区间;
(Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标;
(Ⅲ)设函数 (是自然对数的底数),是否存在a使上为减函数,若存在,求实数a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数

(Ⅰ)若曲线处的切线相互平行,求的值及切线斜率;
(Ⅱ)若函数在区间上单调递减,求的取值范围;
(Ⅲ)设函数的图像C1与函数的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中实数a为常数.
(I)当a=-l时,确定的单调区间:
(II)若f(x)在区间(e为自然对数的底数)上的最大值为-3,求a的值;
(Ⅲ)当a=-1时,证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为元,则销售量(单位:件)与零售价(单位:元)有如下关系:,问该商品零售价定为多少元时毛利润最大,并求出最大毛利润.(毛利润销售收入进货支出)

查看答案和解析>>

同步练习册答案