已知函数,,其中且.
(Ⅰ) 当,求函数的单调递增区间;
(Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标;
(Ⅲ)设函数 (是自然对数的底数),是否存在a使在上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
(1)单调增区间是;(2)对称中心坐标为;(3)符合条件的满足.
解析试题分析:本题综合考查函数与导数及运用导数求单调区间、极值等数学知识和方法,突出考查综合运用数学知识和方法分析问题解决问题的能力.第一问,先将代入,得到的表达式,对其求导,令大于0,解不等式,得出增区间;第二问,由于当时函数有极值,所以是的根,代入得出的值,代入中得到具体解析式,可以看出的对称中心,而到图像是经过平移得到的,所以经过平移,得到对称中心坐标,假设存在,试试看能不能求出来,对求导,得到的两个根分别为1和,通过讨论两根的大小,出现3种情况在每一种情况下,讨论单调性,最后总结出符合题意的的取值范围.
试题解析:(Ⅰ)当,,
设,即,
所以或,
单调增区间是.
(Ⅱ)当时,函数有极值,
所以,且,即,
所以,
所以的图像可由的图像向下平移16个单位长度得到,
而的图像关于对称,
所以函数的图像的对称中心坐标为.
(Ⅲ)假设存在使在上为减函数,
,
(1)当时,,在定义域上为增函数,不合题意;
(2)当时,由得:,在上为增函数,则在上也为增函数,也不合题意;
(3)当时,由得:,若,无解,则,
因为在上为减函数,则在上为减函数,在上为减函数,且,则.由,得.
综上所述,符合条件的满足.
考点:1.利用导数判断函数
科目:高中数学 来源: 题型:解答题
已知函数(其中,e是自然对数的底数).
(Ⅰ)若,试判断函数在区间上的单调性;
(Ⅱ)若,当时,试比较与2的大小;
(Ⅲ)若函数有两个极值点,(),求k的取值范围,并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知a为实数,x=1是函数的一个极值点。
(Ⅰ)若函数在区间上单调递减,求实数m的取值范围;
(Ⅱ)设函数,对于任意和,有不等式
恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100m,并与北京路一边所在直线相切于点M.A为上半圆弧上一点,过点A作的垂线,垂足为B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:),(单位:弧度).
(I)将S表示为的函数;
(II)当绿化面积S最大时,试确定点A的位置,并求最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.
(1)当时,求函数的单调区间;
(2)当时, 若,使得, 求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com