精英家教网 > 高中数学 > 题目详情

已知函数,点为一定点,直线分别与函数的图象和轴交于点,,记的面积为.
(1)当时,求函数的单调区间;
(2)当时, 若,使得, 求实数的取值范围.

(1)的单调递增区间为的单调递增区间为
(2).

解析试题分析:本题考查导数的运算,利用导数研究函数的单调性、最值等基础知识,考查函数思想、分类讨论思想、化归与转化思想.第一问,数形结合得到的表达式,将代入,因为中有绝对值,所以分进行讨论,去掉绝对值,对求导判断函数的单调性;第二问,先由的范围去掉中的绝对值符号,然后对原已知进行转化,转化为,所以下面求是关键,对求导,令解出方程的根,但是得通过的范围判断根在不在的范围内,所以进行讨论,分别求导数判断函数的单调性,确定最值的位置.
试题解析:(I) 因为,其中                  2分
,其中
时,
所以,所以上递增,      4分
时,
, 解得,所以上递增
, 解得,所以上递减  7分
综上,的单调递增区间为的单调递增区间为.
(II)因为,其中
时,
因为,使得,所以上的最大值一定大于等于
,令,得         8分
时,即
成立,单调递增
所以当时,取得最大值
 ,解得
所以          &n

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中
(Ⅰ) 当,求函数的单调递增区间;
(Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标;
(Ⅲ)设函数 (是自然对数的底数),是否存在a使上为减函数,若存在,求实数a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象在上连续,定义:.其中,表示函数上的最小值,表示函数上的最大值.若存在最小正整数,使得对任意的成立,则称函数上的“阶收缩函数”.
(Ⅰ)若,试写出的表达式;
(Ⅱ)已知函数,试判断是否为上的“阶收缩函数”.如果是,求出对应的;如果不是,请说明理由;
(Ⅲ)已知,函数上的2阶收缩函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中,曲线在点处的切线垂直于轴.
(1)求的值;
(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为元,则销售量(单位:件)与零售价(单位:元)有如下关系:,问该商品零售价定为多少元时毛利润最大,并求出最大毛利润.(毛利润销售收入进货支出)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数R,
(1)求函数f(x)的值域;
(2)记函数,若的最小值与无关,求的取值范围;
(3)若,直接写出(不需给出演算步骤)关于的方程的解集

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求函数的单调递减区间;
(II)若上恒成立,求实数的取值范围;
(III)过点作函数图像的切线,求切线方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)若,求的最小值;
(2)如果在定义域内既有极大值又有极小值,求实数的取值范围;
(3)是否存在最小的正整数,使得当时,不等式恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,若在点处的切线斜率为
(Ⅰ)用表示
(Ⅱ)设,若对定义域内的恒成立,求实数的取值范围;

查看答案和解析>>

同步练习册答案