已知函数.
(Ⅰ)若,求在点处的切线方程;
(Ⅱ)求函数的极值点;
(Ⅲ)若恒成立,求的取值范围.
(Ⅰ);(Ⅱ)当时,的极小值点为和,极大值点为;当时,的极小值点为;当时,的极小值点为;(Ⅲ).
解析试题分析:(Ⅰ)时,,先求切线斜率,又切点为,利用直线的点斜式方程求出直线方程;(Ⅱ)极值点即定义域内导数为0的根,且在其两侧导数值异号,首先求得定义域为,再去绝对号,分为和两种情况,其次分别求的根并与定义域比较,将定义域外的舍去,并结合图象判断其两侧导数符号,进而求极值点;(Ⅲ)即,当时,显然成立;当时,,当时,去绝对号得恒成立或恒成立,转换为求右侧函数的最值处理.
试题解析:的定义域为.
(Ⅰ)若,则,此时.因为,所以,所以切线方程为,即.
(Ⅱ)由于,.
⑴ 当时,,,
令,得,(舍去),
且当时,;当时,,
所以在上单调递减,在上单调递增,的极小值点为.
⑵ 当时,.
① 当时,,令,得,(舍去).
若,即,则,所以在上单调递增;
若,即, 则当时,;当时,,所以在区间上是单调递减,在上单调递增,的极小值点为.
② 当时,.
令,得,记,
若,即时,,所以
科目:高中数学 来源: 题型:解答题
如图,现要在边长为的正方形内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为(不小于)的扇形花坛,以正方形的中心为圆心建一个半径为的圆形草地.为了保证道路畅通,岛口宽不小于,绕岛行驶的路宽均不小于.
(1)求的取值范围;(运算中取)
(2)若中间草地的造价为元,四个花坛的造价为元,其余区域的造价为元,当取何值时,可使“环岛”的整体造价最低?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,其中是自然对数的底数.
(1)求函数的零点;
(2)若对任意均有两个极值点,一个在区间内,另一个在区间外,
求的取值范围;
(3)已知且函数在上是单调函数,探究函数的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=在x=0,x=处存在极值。
(Ⅰ)求实数a,b的值;
(Ⅱ)函数y=f(x)的图象上存在两点A,B使得△AOB是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,求实数c的取值范围;
(Ⅲ)当c=e时,讨论关于x的方程f(x)=kx(k∈R)的实根个数。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,,其中且.
(Ⅰ) 当,求函数的单调递增区间;
(Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标;
(Ⅲ)设函数 (是自然对数的底数),是否存在a使在上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com