精英家教网 > 高中数学 > 题目详情

已知函数.
(Ⅰ)若曲线在点处的切线与直线平行,求实数的值;
(Ⅱ)若函数处取得极小值,且,求实数的取值范围.

(Ⅰ)2;(Ⅱ)详见解析.

解析试题分析:(Ⅰ)由导函数的几何意义可知曲线在点处的切线的斜率为,又切线与直线平行,则,对求导得,令
(Ⅱ)令,对比较大小进行讨论,并与函数处取得极小值比较确定,又,则(其中
试题解析:(1),由
(2)由
①当,即时,函数上单调递增,在上单调递减,在上单调递增
即函数处取得极小值
②当,即时,函数上单调递增,无极小值,所以
③当,即时,函数上单调递增,在上单调递减,在上单调递增
即函数处取得极小值,与题意不符合
时,函数处取得极小值,又因为,所以.
考点:1.导函数的几何意义;2.分离参数法求恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-(1+2a)xaln x(a为常数).
(1)当a=-1时,求曲线yf(x)在x=1处切线的方程;
(2)当a>0时,讨论函数yf(x)在区间(0,1)上的单调性,并写出相应的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(x+1)ln x-2x.
(1)求函数的单调区间;
(2)设h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数, 在处取得极小值2.
(1)求函数的解析式;
(2)求函数的极值;
(3)设函数, 若对于任意,总存在, 使得, 求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数的单调区间和极值;
(Ⅱ)设函数图象上任意一点的切线的斜率为,当的最小值为1时,求此时切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)求证:函数上单调递增;
(Ⅱ)设,若直线PQ∥x轴,求P,Q两点间的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为函数图象上一点,O为坐标原点,记直线的斜率
(Ⅰ)若函数在区间上存在极值,求实数m的取值范围;
(Ⅱ)设,若对任意恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求在点处的切线方程;
(Ⅱ)求函数的极值点;
(Ⅲ)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中,e是自然对数的底数).
(Ⅰ)若,试判断函数在区间上的单调性;
(Ⅱ)若,当时,试比较与2的大小;
(Ⅲ)若函数有两个极值点),求k的取值范围,并证明

查看答案和解析>>

同步练习册答案