已知函数f(x)=x2-(1+2a)x+aln x(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.
科目:高中数学 来源: 题型:解答题
若函数在上为增函数(为常数),则称为区间上的“一阶比增函数”,为的一阶比增区间.
(1) 若是上的“一阶比增函数”,求实数的取值范围;
(2) 若 (,为常数),且有唯一的零点,求的“一阶比增区间”;
(3)若是上的“一阶比增函数”,求证:,
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=-x3+x2-2x(a∈R).
(1)当a=3时,求函数f(x)的单调区间;
(2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围;
(3)若过点可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.
(1)求a,b的值;
(2)讨论f(x)的单调性,并求f(x)的极大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com