精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a
x
+x+(a-1)lnx+15a其中a<0,讨论函数f(x)的单调性.
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:先求出函数的导数,再分别讨论a的范围,从而求出函数的单调区间.
解答: 解:∵f′(x)=
(x+a)(x-1)
x2

①若-1<a<0,则0<x<-a时,f′(x)>0,-a<x<1时,f′(x)<0,x>1时,f′(x)>0,
∴f(x)在(0,-a),(1,+∞)递增,在(-a,1)递减;
②若a=-1,f(x)在(0,+∞)递增;
③若a<-1,仿①可得f(x)在(0,1),(-a,+∞)递增,在(1,-a)递减.
点评:本题考查了函数的单调性,考查分类讨论思想,本题属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
6
x-1
(x∈[2,6]),求函数的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一条生产线上按同样的方式每隔30分钟取一件产品,共取了n件,测得其产品尺寸后,画得其频率分布直方图如图所示,已知尺寸在[15,45)内的频数为46.

(1)该抽样方法是什么方法?
(2)求n的值;
(3)求尺寸在[20,25)内的产品的件数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+x+blnx在x=1与x=2处取极值.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)在区间[
1
e
,e2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校共有高一、高二、高三学生3600名,各年级男、女生人数如图:

已知在全校学生中随机抽取1名,抽到高三年级女生的概率是0.14.
(Ⅰ)求y的值;
(Ⅱ)现用分层抽样的方法在全校抽取90名学生,问应在高二年级抽取多少名?
(Ⅲ)已知x≥675,z≥675,求高二年级中女生比男生多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,前m项的和为77(m为奇数),其中偶数项的和为33,且a1-am=18,求这个数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,棱长为2的正方体ABCD-A1B1C1D1中,M,N分别是线段AD1和B1C上的动点,且满足D1M=CN,则下列命题正确的是
 
.(把所有正确命题的序号都填上)
①存在M,N的某一位置,使AB∥MN;
②△BMN的面积为定值;
③当D1M>0时,直线MB1与AN是异面直线;
④无论M,N运动到任一位置,均有BC⊥MN;
⑤M,N在运动过程中,线段MN在平面ADA1D1内的射影所形成区域的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数f(x)=ax的图象经过点(3,8),则f(-1)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过抛物线y=2x2的焦点,交抛物线于A,B两点,则|AB|的最小值为
 

查看答案和解析>>

同步练习册答案