精英家教网 > 高中数学 > 题目详情

设函数f(x)=|2x-1|+x+3,则f(-2)=________;若f(x)≤5,则x的取值范围是________.

6    [-1,1]
分析:直接代入-2求出函数值f(-2),f(x)≤5,去掉绝对值符号,对x分类讨论,即x≥,和x分别解不等式组即可.
解答:f(-2)=|2•(-2)-1|+(-2)+3=6,
将f(x)=|2x-1|+x+3≤5变形为

解得,即-1≤x≤1.
所以,x的取值范围是[-1,1].
故答案为:6;[-1,1].
点评:主要考查绝对值不等式的解法,以及去绝对值、解不等式组等所需要的代数变形能力.只要理解绝对值的含义,就可结合分类讨论思想,将不等式进行等价转化,轻松完成此题的解答.《不等式选讲》这一专题,以基本不等式、绝对值不等式、柯西不等式作为命题的热点,离不开必修部分《不等式》章节的扎实基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数k,定义函数fk(x)=
f(x),f(x)≤k
k,f(x)>k
.设函数f(x)=2+x-ex,若对任意的x∈(-∞,+∞)恒有fk(x)=f(x),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,
3
4
),
b
=(cosx,-1).
(1)当
a
b
时,求cos2x-sin2x的值;
(2)设函数f(x)=2(
a
+
b
)•
b
,求f(x)的值域.(其中x∈(0,
24
))

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2|x+1-|x-1|,则满足f(x)≥2
2
的x取值范围为
[
3
4
,+∞)
[
3
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2-x -1  x≤0
x
1
2
x>0
,则f[f(-1)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2,x<1
x-1
,x≥1
 则f(f(f(1)))=
1
1

查看答案和解析>>

同步练习册答案