解法一: ,
依题设知
,
.
(Ⅰ)连结
交
于点
,则
.
由三垂线定理知,
.······························································· 3分
在平面
内,连结
交
于点
,
由于
,
故
,
,
与
互余.
于是
.
与平面
内两条相交直线
都垂直,
所以
平面
.········································································· 6分
(Ⅱ)作
,垂足为
,连结
.由三垂线定理知
,
故
是二面角
的平面角.··············································· 8分
,
,
.
,
.
又
,
.
.
所以二面角
的大小为
.··············· 12分
解法二:
以
为坐标原点,射线
为
轴的正半轴,
建立如图所示直角坐标系
.
依题设,
.
,
.······························································· 3分
(Ⅰ)因为
,
,
故
,
.
又
,
所以
平面
.········································································· 6分
(Ⅱ)设向量
是平面
的法向量,则
,
.
故
,
.
令
,则
,
,
.·············································· 9分
等于二面角
的平面角,
.
所以二面角
的大小为
.