精英家教网 > 高中数学 > 题目详情

【题目】关于下列命题:
①若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1};
②若函数y= 的定义域是{x|x>2},则它的值域是{y|y≤ };
③若函数y=x2的值域是{y|0≤y≤4},则它的定义域一定是{x|﹣2≤x≤2};
④若函数y=log2x的值域是{y|y≤3},则它的定义域是{x|0<x≤8}.
其中不正确的命题的序号是 . (注:把你认为不正确的命题的序号都填上)

【答案】①②③
【解析】解:①中函数y=2x的定义域x≤0,值域y=2x∈(0,1];原解错误;
②函数y= 的定义域是{x|x>2},值域y= ∈(0, );原解错误;
③中函数y=x2的值域是{y|0≤y≤4},,y=x2的值域是{y|0≤y≤4},
但它的定义域不一定是{x|﹣2≤x≤2};原解错误
④中函数y=log2x的值域是{y|y≤3},y=log2x≤3,
∴0<x≤8,故①②③错,④正确.
所以答案是:①②③
【考点精析】本题主要考查了函数的定义域及其求法和函数的值域的相关知识点,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,是偶函数,且在区间(0,1)上为增函数的是(
A.y=|x|
B.y=1﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, // , 点 边的中点, 将△沿折起,使平面⊥平面,连接, , , 得到如图所示的几何体.

(Ⅰ)求证: ⊥平面

(Ⅱ)若 ,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积是 ,表面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 .

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥中, 为线段上一点,且

(Ⅰ)若的中点,证明: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为 .

1)求数列的通项公式;

2)令设数列的前项和为

3)令恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x2﹣ax﹣3(﹣5≤x≤5)
(1)若a=2,求函数的最值;
(2)若函数在定义域内是单调函数,求a取值的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆和直线

1求证:不论取什么值,直线和圆C总相交;

(2)求直线被圆C截得的最短弦长及此时的直线方程.

查看答案和解析>>

同步练习册答案