精英家教网 > 高中数学 > 题目详情
已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过三点
(1)求椭圆方程
(2)若此椭圆的左、右焦点F1、F2,过F1作直线L交椭圆于M、N两点,使之构成△MNF2。证明:△MNF2的周长为定值.
解:(1)设椭圆方程为mx2+my2=1(m>0,n>0),
将A(﹣2,0)、B(2,0)、代入椭圆E的方程,

解得
∴椭圆E的方程
(2)利用椭圆的定义可知,
|F1M|+|F2M|=2a=4,|F1N|+|F2N|=2a=4
∴ △MNF2的周长为|F1M|+|F2M|+F1N|+|F2N|=2a+2a=4+4=8
∴△MNF2的周长是定值为4a=8 .
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过A(-2,0),B(2,0),C(1,
32
)
三点
(1)求椭圆方程
(2)若此椭圆的左、右焦点F1、F2,过F1作直线L交椭圆于M、N两点,使之构成△MNF2证明:△MNF2的周长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过A(-2,0)、B(2,0)、C(1,
32
)
三点.
(1)求椭圆E的方程:
(2)若点D为椭圆E上不同于A、B的任意一点,F(-1,0),H(1,0),当△DFH内切圆的面积最大时.求内切圆圆心的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)已知椭圆E的中心在坐标原点O,焦点在坐标轴上,且经过M(2,1),N(2
2
,0)
两点.
(1)求椭圆E的方程;
(2)若平行于OM的直线l在y轴上的截距为b(b<0),直线l交椭圆E于两个不同点A、B,直线MA与MB的斜率分别为k1、k2,求证:k1+k2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过A(-2,0)、B(2,0)、C(1,
32
)
三点.
(1)求椭圆E的方程;
(2)若点D为椭圆E上不同于A、B的任意一点,F(-1,0),H(1,0),当△DFH内切圆的面积最大时,求内切圆圆心的坐标;
(3)若直线l:y=k(x-1)(k≠0)与椭圆E交于M、N两点,证明直线AM与直线BN的交点在定直线上并求该直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的中心在坐标原点O,焦点在坐标轴上,且经过M(2,1)、N(2
2
,0)
两点,P是E上的动点.
(1)求|OP|的最大值;
(2)若平行于OM的直线l在y轴上的截距为b(b<0),直线l交椭圆E于两个不同点A、B,求证:直线MA与直线MB的倾斜角互补.

查看答案和解析>>

同步练习册答案