精英家教网 > 高中数学 > 题目详情

已知函数f(x2-3)=loga数学公式(a>0,a≠1).
(1)试判断函数f(x)的奇偶性.
(2)解不等式:f(x)≥loga(2x).

解 (1)设x2-3=t,则f(t)=loga
即f(x)=loga,其定义域为(-3,3),且f(-x)=-f(x).
∴f(x)在(-3,3)上是奇函数.…(4分)
(2)a>1时,≥2x>0,解得x∈(0,1)∪[,3].…(8分)
0<a<1时,0<≤2x,解得x∈[1,].…(12分)
分析:(1)设x2-3=t,利用换元法得出f(t)=loga,从而得出函数f(x)的解析式,可求得定义域关于原点对称,利用奇偶函数的定义可判断f(x)奇偶性;
(2)对a分0<a<1与a>1两种情况讨论,再利用相对应的函数的单调性列不等式求解即可.
点评:本题考查指、对数不等式的解法、函数奇偶性的判断,考查分类讨论思想和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x2-3)=lg
x2x2-6

(1)求f(x)的解析式;
(2)判断f(x)的奇偶性;
(3)若f[φ(x)]=lgx,求φ(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x2-3)=lg
x2x2-6
(1)求f(x)的定义域;(2)判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+3 (x≥0)
ax+b (x<0)
是R上的增函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+3 (x≤0)
f(x-2)  (x>0)
,则f(4)=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x2-3)=loga
x26-x2
(a>0,a≠1).
(1)试判断函数f(x)的奇偶性.
(2)解不等式:f(x)≥loga(2x).

查看答案和解析>>

同步练习册答案