精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知椭圆的右焦点,点在椭圆上.

(1)求椭圆的方程;

(2)过原点的直线与椭圆交于两点(不是椭圆的顶点),点在椭圆上,且,直线轴,轴分别交于两点.

(ⅰ)设直线斜率分别为,求的值;

(2)求面积的最大值.

【答案】(1) (2) (ⅰ) (ⅱ)

【解析】

(1)由题意和椭圆的几何性质,列出方程组,求得的值,即可得到椭圆的方程;

(2)(ⅰ)设,则,利用斜率公式,即可求解.

(ⅱ)直线的斜率,进而得到直线的斜率,得出直线的方程为,进而得出的坐标,求得的面积,再利用基本不等式,即可求解面积的最值.

(1),且过

解得

∴椭圆方程为

(2)(ⅰ)设,则

(ⅱ)直线的斜率,又,故直线的斜率

由题意知,,所以

所以直线的方程为

,得,即,令,得,即

可得的面积

因为,当且仅当时等号成立,

此时取得最大值,所以的面积为最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与交于点.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一工厂生产了某种产品700件,该工厂对这些产品进行了安全和环保这两个性能的质量检测。工厂决定利用随机数表法从中抽取100件产品进行抽样检测,现将700件产品按001,002,…,700进行编号;

(1)如果从第8行第4列的数开始向右读,请你依次写出最先检测的3件产品的编号;

(下面摘取了随机数表的第7~9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

(2)抽取的100件产品的安全性能和环保性能的质量检测结果如下表:

检测结果分为优等、合格、不合格三个等级,横向和纵向分别表示安全性能和环保性能。若在该样本中,产品环保性能是优等的概率为,求的值。

件数

环保性能

优等

合格

不合格

安全性能

优等

6

20

5

合格

10

18

6

不合格

4

(3)已知,求在安全性能不合格的产品中,环保性能为优等的件数比不合格的件数少的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图,长方形材料中,已知.点为材料内部一点,,且. 现要在长方形材料中裁剪出四边形材料,满足,点分别在边上.

(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;

(2)试确定点上的位置,使得四边形材料的面积最小,并求出其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为2的菱形,底面.

1)求证:平面

2)若,直线与平面所成的角为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一矩形滨河公园,其中长为百米,长为百米,的中点为便民服务中心.根据居民实际需求,现规划建造三条步行通道,要求点分别在公园边界上,且.

1)设.①求步道总长度关于的函数解析式;②求函数的定义域.

2)为使建造成本最低,需步行通道总长最短,试求步行通道总长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数其中.

(1)求函数的单调区间;

(2)已知当其中是自然对数时,在上至少存在一点使成立,求的取值范围;

(3)求证:当时,对任意 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017双节期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速分成六段: 后得到如图的频率分布直方图.

(1)调查公司在采样中,用到的是什么抽样方法?

(2)求这40辆小型车辆车速的众数、中位数及平均数的估计值;

(3)若从车速在的车辆中任抽取2辆,求车速在的车辆至少有一辆的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

Ⅰ)当时,求函数在区间上的最大值与最小值;

Ⅱ)当的图像经过点时,求的值及函数的最小正周期.

查看答案和解析>>

同步练习册答案