精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,AD1与BD所成的角是
 
考点:异面直线及其所成的角
专题:空间角
分析:通过平移直线作出异面直线AD1与BD所成的角,在三角形中即可求得.
解答: 解:如图,连结BC1、BD和DC1
在正方体ABCD-A1B1C1D1中,
由AB=D1C1,AB∥D1C1,可知AD1∥BC1
所以∠DBC1就是异面直线AD1与BD所成角,
在正方体ABCD-A1B1C1D1中,BC1、BD和DC1是其三个面上的对角线,它们相等.
所以△DBC1是正三角形,∠DBC1=60°
故异面直线AD1与BD所成角的大小为60°.
故答案为60°.
点评:本题考查异面直线所成的角及其求法,解决该类题目的基本思路是化空间角为平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
9x
9x+3

(1)求证:f(x)+f(1-x)=1;
(2)若f(x)+f(1-x)=1,根据f(x)=
9x
9x+3
,写出一个更为一般的函数g(x);
(3)计算:f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
).

查看答案和解析>>

科目:高中数学 来源: 题型:

某商店有甲、乙、丙三家连锁分店分别出售A、B、C、D四类商品,2013年上半年与下半年的出售数量如下表所示(单位:万件) 2013年上半年
 ABCD
52386823
36125640
26247333
2013年下半年
 ABCD
44465225
36245232
34364739
(1)分别用矩阵A、B表示2013年上半年、下半年个分店商品的销售量;
(2)使用矩阵C表示并计算全年各分店商品的销售量.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+a
x+1
(x≥0)的最小值为2
2
,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的通项公式为an=ncos
2
,其前n项和为Sn,则S2015等于(  )
A、1002B、1004
C、1006D、-1008

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)为定义在R上的奇函数,f(x+2)=-f(x).当x∈[-1,0]时,f(x)=f0(x)=x3
(1)当x∈[1,3]时,求y=f1(x)的解析式;
(2)记y=f(x),x∈(4k-1,4k+1],k∈Z为y=fk(x),求y=fk(x)及其反函数y=fk-1(x)的解析式;
(3)定义g(x)=2k+(-1)kf(x),其中x∈[2k-1,2k+1],探究方程g(x)-b=0(b>0)在区间[-2013,2013]上的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

若等差数列{an}满足a1+2014a2014=2013a2013,O为坐标原点,点P(1,a1),Q(2014,a2014),则
OP
OQ
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ADF-BCE中,DF⊥平面ABCD,AD=DC,G是DF的中点
(Ⅰ)求证:BF∥平面ACG;
(Ⅱ)求证:平面ACG⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:

若原点和点(1,1)都在直线x+y=a的同一侧,则a的取值范围是(  )
A、a<0或a>2
B、0<a<2
C、a=0或a=2
D、0≤a≤2

查看答案和解析>>

同步练习册答案