(本小题满分14分)
如图,在四棱锥P—ABCD中,AB∥CD,CD=2AB,AB
平面PAD,E为PC的中点.
(1)求证:BE∥平面PAD;
(2)若AD
PB,求证:PA
平面ABC D.
![]()
略
【解析】证明:(1)(方法一)取PD中点F,连结EF,AF.
因为E是PC的中点,F是PD的中点,
所以EF∥CD,且CD=2EF.
|
所以EF=AB,即四边形ABEF是平行四边形.
因此BE∥AF.………………5分
又
平面PAD,
平面PAD,
所以BE∥平面PAD.………………8分
(方法二)延长DA、CB,交于点F,连结PF.
因为AB∥CD,CD=2AB,
所以B为CF的中点.
又因为E为PC的中点,
所以BE∥PF.………………5分
因为
平面PAD,
平面PAD,
所以BE∥平面PAD.………………8分
(方法三)取CD中点F,连结EF,BF.
因为E为PC中点, F为CD中点,
所以EF∥PD.
因为
平面PAD,
平面PAD,
所以EF∥平面PA D.………………2分
因为F为CD中点,所以CD=2FD.
|
故AB=FD,即四边形ABFD为平行四边形,所以BF∥AD.
因为
平面PAD,
平面PAD,所以BF∥平面PAD.
因为
平面BEF,
所以平面BEF∥平面PA D.………………6分
因为
平面BEF,所以BE∥平面PA D.………………8分
(2)因为AB
平面PAD,PA,
平面PAD,
所以
……………………10分
因为![]()
所以
平面PA B.………………12分
又
平面PAB,所以![]()
因为
故PA
面ABCD.……………………14分
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com