精英家教网 > 高中数学 > 题目详情

若函数f(x)=数学公式
(1)若f(x)在x=1处的切线方程式y=-2x+3,这样的a是否存在?若存在,求出a的值,不存在说明理由.
(2)若f(x)在区间[1,3]上单调递增,求a的取值范围.

解:(1)设存在实数a,使得f(x)在x=1处的切线方程为y=-2x+3
则f′(1)=-2?a=0或1,


∴不存在这样的a.
(2)f′(x)=2x2-x+a2-a-32x2-x+a2-a-3≥0在x∈[1,3]上恒成立?a2-a-3≥x-x2在x∈[1,3]上恒成立?a2-a-3≥(x-2x2max,在x∈[1,3]?a2-a-3≥-1?a≥2或a≤-1
分析:(1)要使得f(x)在x=1处的切线方程为y=-2x+3则f′(1)=-2?a=0或1,再利用切点为(1,1)可解;
(2)f(x)在区间[1,3]上单调递增等价于f′(x)=2x2-x+a2-a-32x2-x+a2-a-3≥0在x∈[1,3]上恒成立,从而转化为a2-a-3≥(x-2x2max,从而得解.
点评:本题以函数为载体,考查导数的几何意义,考查函数的单调性,同时考查了恒成立问题的处理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x),g(x)的定义域和值域都是R,则“f(x)<g(x),x∈R”成立的充要条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x+x3,x1,x2∈R,且x1+x2>0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•厦门模拟)定义在R上的函数f(x),其图象是连续不断的,如果存在非零常数λ(λ∈R,使得对任意的x∈R,都有f(x+λ)=λf(x),则称y=f(x)为“倍增函数”,λ为“倍增系数”,下列命题为真命题的是
①③④
①③④
(写出所有真命题对应的序号).
①若函数y=f(x)是倍增系数λ=-2的倍增函数,则y=f(x)至少有1个零点;
②函数f(x)=2x+1是倍增函数,且倍增系数λ=1;
③函数f(x)=
e
-x
 
是倍增函数,且倍增系数λ∈(0,1);
④若函数f(x)=sin(2ωx)(ω>0)是倍增函数,则ω=
2
(k∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为[0,4],则g(x)=
f(2x)x-1
的定义域为
[0,1)∪(1,2]
[0,1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sinωx+acosωx(ω>0)的图象关于点M(
π
3
,0)
对称,且满足f(
π
6
-x
)=f(
π
6
+x
),则a+ω的一个可能的取值是(  )

查看答案和解析>>

同步练习册答案