精英家教网 > 高中数学 > 题目详情
13.若x∈R,则(1-|x|)(1+x)>0等价于(-1,1)∪(-∞,-1).

分析 不等式等价于 (|x|-1)(x+1)<0,再分当x≥0时、当x<0时两种情况,分别求得x的范围.

解答 解:(1-|x|)(1+x)>0 等价于 (|x|-1)(x+1)<0,
当x≥0时,不等式等价于 (x-1)(x+1)<0,即0≤x<1.
当x<0时,不等式等价于 (-x-1)(x+1)<0,即-(x+1)2<0,(x+1)2>0,即x≠-1.
综上可得,原不等式等价于0≤x<1,或x<0且x≠-1,
故答案为:(-1,1)∪(-∞,-1).

点评 本题主要考查绝对值不等式的解法,体现了等价转化和分类讨论的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.不等式x2+6x+9≥0的解集为(  )
A.B.RC.{x|x≤-3}D.{x|x≤-3或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x3+x-3在(-∞,+∞)上单调增加,则方程x3+x-3=0的一个根的区间是(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设A=[-2,3],B=[-2,7),求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若420°角的终边所在直线上有一点(-4,a),则a的值为-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.己知f(x)是定义在R上的函数,且对任意x∈R都有f(x+2)=f(2-x)+4f(2),若函数y=f(x+1)的图象关于点(-1,0)对称,且f(1)=3,则f(2015)=(  )
A.6B.3C.0D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若logmn=-1,则m+3n的最小值为(  )
A.2B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$是单位向量,若$\overrightarrow{a}$$•\overrightarrow{b}$=0,且|$\overrightarrow{c}$-$\overrightarrow{a}$|+|$\overrightarrow{c}$-2$\overrightarrow{b}$|=$\sqrt{5}$,则|$\overrightarrow{c}$+$\overrightarrow{a}$$-\overrightarrow{b}$|的取值范围是(  )
A.[$\frac{3}{5}$,5]B.[$\sqrt{2}$,$\sqrt{5}$]C.[$\frac{3\sqrt{5}}{5}$,$\sqrt{5}$]D.[$\sqrt{2}$,$\frac{3\sqrt{5}}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若a>0,b>0,且$\frac{1}{2a+b}$+$\frac{1}{b+1}$=1,则a+2b的最小值为$\frac{1}{2}$+$\sqrt{3}$.

查看答案和解析>>

同步练习册答案