精英家教网 > 高中数学 > 题目详情
18.己知f(x)是定义在R上的函数,且对任意x∈R都有f(x+2)=f(2-x)+4f(2),若函数y=f(x+1)的图象关于点(-1,0)对称,且f(1)=3,则f(2015)=(  )
A.6B.3C.0D.-3

分析 由函数f(x+1)的图象关于(-1,0)对称且由y=f(x+1)向右平移1个单位可得y=f(x)的图象可知函数y=f(x)的图象关于原点对称即函数y=f(x)为奇函数,在已知条件中令x=-1可求f(1)及函数的周期,利用所求周期即可求解

解答 解:∵函数f(x+1)的图象关于(-1,0)对称且把y=f(x+1)向右平移1个单位可得y=f(x)的图象,
∴函数y=f(x)的图象关于(0,0)对称,即函数y=f(x)为奇函数,
∴f(0)=0,f(1)=3,
∵f(x+2)=f(2-x)+4f(2)=-f(x-2)+4f(2),
∴f(x+4)=-f(x)+4f(2),
f(x+8)=-f(x+4)+4f(2)=f(x),
函数的周期为8,
f(2015)=f(252×8-1)=f(-1)=-f(1)=-3.
故选:D.

点评 本题主要考出了函数的图象的平移及函数图象的对称性的应用,利用赋值求解抽象函数的函数值,函数周期的求解是解答本题的关键所在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(3x-2)的定义域是[-2,0),则函数f(x)的定义域是[-8,-2);若函数f(x)的定义域是(-2,4],则f(-2x+2)的定义域是[-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|3≤x<8},B={x|-2<x≤7},C={x|x≤a}.
(1)求(∁RB)∩A;
(2)若B∪C=C,求实数a的取值范围;
(3)若A∩C=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在(-∞,+∞)的奇函数f(x)满足f(2-x)=f(x),当x∈($\frac{1}{2}$,$\frac{3}{2}$)时,f(x)=x3+lnx,则f(2015)的值为(  )
A.1B.-1C.0D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若x∈R,则(1-|x|)(1+x)>0等价于(-1,1)∪(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数g(x)=(x3-x)f(x)是偶函数,则函数f(x)可能是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知二次不等式x2-12x+9<0的解集为(α,β),则$\frac{{α}^{\frac{3}{2}}-{β}^{\frac{3}{2}}}{α-β}$=$\frac{5\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.当a为何值时,方程$\frac{lgx}{lg2}$+$\frac{lg(a-x)}{lg2}$=log2(a2-1)有解?只有一个解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:

(1)本次被调查的学生有200名;
(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数
(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

同步练习册答案