分析 化简可得log2x+log2(a-x)=log2(a2-1),从而可得$\left\{\begin{array}{l}{{x}^{2}-ax+{a}^{2}-1=0}\\{a>1}\end{array}\right.$,从而解得.
解答 解:∵$\frac{lgx}{lg2}$+$\frac{lg(a-x)}{lg2}$=log2(a2-1),
∴log2x+log2(a-x)=log2(a2-1),
∴$\left\{\begin{array}{l}{{x}^{2}-ax+{a}^{2}-1=0}\\{a>1}\end{array}\right.$,
故△=a2-4(a2-1)≥0,
故1<a≤$\frac{2\sqrt{3}}{3}$,
当a=$\frac{2\sqrt{3}}{3}$时,方程$\frac{lgx}{lg2}$+$\frac{lg(a-x)}{lg2}$=log2(a2-1)只有一个解.
点评 本题考查了方程的解法及对数的化简与应用.
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 3 | C. | 0 | D. | -3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{3}{5}$,5] | B. | [$\sqrt{2}$,$\sqrt{5}$] | C. | [$\frac{3\sqrt{5}}{5}$,$\sqrt{5}$] | D. | [$\sqrt{2}$,$\frac{3\sqrt{5}}{5}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {至多两个偶数} | B. | {至多两个奇数} | C. | {至少两个奇数} | D. | {至多一个偶数} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -5 | B. | -$\frac{1}{2}$ | C. | -5或-$\frac{1}{2}$ | D. | -5或-$\frac{1}{2}$或-2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com