精英家教网 > 高中数学 > 题目详情
2.集合I={0,1,2,3,4,5,6,7,8,9},从集合I中取5个元素,设A={至少两个偶数},则A的对立事件为(  )
A.{至多两个偶数}B.{至多两个奇数}C.{至少两个奇数}D.{至多一个偶数}

分析 由题意,至少的反面是至多,可得结论.

解答 解:由题意,至少的反面是至多,
∵A={至少两个偶数},
∴A的对立事件为{至多一个偶数}.
故选:D.

点评 本题考查对立事件,考查学生对概念的理解,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知定义在(-∞,+∞)的奇函数f(x)满足f(2-x)=f(x),当x∈($\frac{1}{2}$,$\frac{3}{2}$)时,f(x)=x3+lnx,则f(2015)的值为(  )
A.1B.-1C.0D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.当a为何值时,方程$\frac{lgx}{lg2}$+$\frac{lg(a-x)}{lg2}$=log2(a2-1)有解?只有一个解?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x∈($\frac{1}{2}$,1),a=log2x,b=2log2x,c=log${\;}_{2}^{3}$x,则(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.lg5-lg$\frac{1}{2}$-lg25-2lg2=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.二次函数f(x)=ax2+bx+c,a∈N*,c≥1,a+b+c≥1,方程ax2+bx+c=0有两个小于1的不等正根,则a的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:

(1)本次被调查的学生有200名;
(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数
(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在三棱柱ABC-A1B1C1中侧棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC-A1B1C1的体积为3,则三棱柱ABC-A1B1C1的外接球的表面积为(  )
A.16πB.$2\sqrt{3}$C.πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)若复数z1=a+i,z2=1-i(i为虚数单位),且z1-z2为纯虚数,求实数a的值.
(2)已知i是虚数单位,若复数z满足(1+i)z=2-i,求|z+i|,并求出复数$\frac{1+i}{z}$的虚部.

查看答案和解析>>

同步练习册答案