精英家教网 > 高中数学 > 题目详情
12.(1)若复数z1=a+i,z2=1-i(i为虚数单位),且z1-z2为纯虚数,求实数a的值.
(2)已知i是虚数单位,若复数z满足(1+i)z=2-i,求|z+i|,并求出复数$\frac{1+i}{z}$的虚部.

分析 (1)由复数z1,z2,求出z1-z2,且z1-z2为纯虚数,得到实部为0,虚部不为0,即可求出a的值.
(2)由(1+i)z=2-i,利用复数代数形式的乘除运算求出z,则|z+i|可求,把z代入$\frac{1+i}{z}$,然后化简即可求出复数$\frac{1+i}{z}$的虚部.

解答 解:(1)由复数z1=a+i,z2=1-i,
则z1-z2=a+i-(1-i)=a-1+2i.
∵z1-z2为纯虚数,
∴a-1=0.则a=1;
(2)由(1+i)z=2-i,
得$z=\frac{2-i}{1+i}=\frac{(2-i)(1-i)}{(1+i)(1-i)}=\frac{1}{2}-\frac{3}{2}i$.
则|z+i|=$|\frac{1}{2}-\frac{3}{2}i+i|$=$|\frac{1}{2}-\frac{1}{2}i|=\sqrt{(\frac{1}{2})^{2}+(-\frac{1}{2})^{2}}=\frac{\sqrt{2}}{2}$.
∵$\frac{1+i}{z}$=$\frac{1+i}{\frac{1}{2}-\frac{3}{2}i}=\frac{2(1+i)(1+3i)}{(1-3i)(1+3i)}=-\frac{2}{5}+\frac{4}{5}i$,
∴复数$\frac{1+i}{z}$的虚部为:$\frac{4}{5}$.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,考查了复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.集合I={0,1,2,3,4,5,6,7,8,9},从集合I中取5个元素,设A={至少两个偶数},则A的对立事件为(  )
A.{至多两个偶数}B.{至多两个奇数}C.{至少两个奇数}D.{至多一个偶数}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若关于x的方程$\frac{x+1}{x+2}$-$\frac{x}{x-1}$=$\frac{ax+2}{(x-1)(x+2)}$无解,求a的值为(  )
A.-5B.-$\frac{1}{2}$C.-5或-$\frac{1}{2}$D.-5或-$\frac{1}{2}$或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
(Ⅰ)求证:{lgan}是等差数列;
(Ⅱ)设Tn是数列$\{\frac{3}{{(lg{a_n})(lg{a_{n+1}})}}\}$的前n项和,求Tn
(Ⅲ)若${T_n}>\frac{1}{2}({m^2}-5m)$在n∈N*上有解,求整数m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$cos(-\frac{8π}{3})$的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果把一个球的表面积扩大到原来的2倍,变为一个新球,那么新球的体积扩大到原来的λ倍,则(  )
A.λ∈(0,1)B.λ∈(1,2)C.λ∈(2,3)D.λ∈(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某次抽奖活动在三个箱子中均放有红、黄、绿、蓝、紫、橙、白、黑8种颜色的球各一个,奖励规则如下:从三个箱子中分别摸出一个球,摸出的3 个球均为红球的得一等奖,摸出的3个球中至少有一个绿球的得二等奖,摸出的3个球均为彩色球(黑、白除外)的得三等奖.问不中奖的概率是多少?(  )
A.在0~25%之间B.在25~50%之间C.在50~75%之间D.在75~100%之间

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若向量$\overrightarrow{a}$=(cosα,1),$\overrightarrow{b}$=(1,2tanα),且$\overrightarrow{a}∥\overrightarrow{b}$,则sinα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数y=x2-2ax+1在(-∞,2]上是减函数,则实数a的取值范围(  )
A.[-∞,-2]B.[-2,+∞]C.[2,+∞]D.[-∞,2]

查看答案和解析>>

同步练习册答案