精英家教网 > 高中数学 > 题目详情
20.设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
(Ⅰ)求证:{lgan}是等差数列;
(Ⅱ)设Tn是数列$\{\frac{3}{{(lg{a_n})(lg{a_{n+1}})}}\}$的前n项和,求Tn
(Ⅲ)若${T_n}>\frac{1}{2}({m^2}-5m)$在n∈N*上有解,求整数m的取值集合.

分析 (1)an+1=9Sn+10,则当n≥2时,an=9Sn-1+10,相减化为an+1=10an,可得lgan+1-lgan=1,即可证明;
(II)由(I)可得:lgan=n.$\frac{3}{lg{a}_{n}lg{a}_{n+1}}$=$\frac{3}{n(n+1)}$=3$(\frac{1}{n}-\frac{1}{n+1})$.利用“裂项求和”即可得出.
(III)由${T_n}>\frac{1}{2}({m^2}-5m)$在n∈N*上有解,$\frac{1}{2}({m}^{2}-5m)$<(Tnmax,而Tn<3,可得$\frac{1}{2}({m}^{2}-5m)$<3,解出即可.

解答 (1)证明:∵an+1=9Sn+10,
∴当n≥2时,an=9Sn-1+10,可得an+1-an=9an,化为an+1=10an
∴lgan+1-lgan=1,lga1=1.
∴{lgan}是等差数列,首项为1,公差为1.
(II)解:由(I)可得:lgan=1+(n-1)=n.
∴$\frac{3}{lg{a}_{n}lg{a}_{n+1}}$=$\frac{3}{n(n+1)}$=3$(\frac{1}{n}-\frac{1}{n+1})$.
∴Tn=$3[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=3$(1-\frac{1}{n+1})$=$\frac{3n}{n+1}$.
(III)∵${T_n}>\frac{1}{2}({m^2}-5m)$在n∈N*上有解,
∴$\frac{1}{2}({m}^{2}-5m)$<(Tnmax
∵Tn<3,
∴$\frac{1}{2}({m}^{2}-5m)$<3,
解得-1<m<6,
∴整数m的取值集合为{0,1,2,3,4,5}.

点评 本题考查了递推关系的应用、等差数列的通项公式、“裂项求和”方法、对数的运算性质、不等式的性质,考查了转化能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若x∈($\frac{1}{2}$,1),a=log2x,b=2log2x,c=log${\;}_{2}^{3}$x,则(  )
A.a<b<cB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在三棱柱ABC-A1B1C1中侧棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC-A1B1C1的体积为3,则三棱柱ABC-A1B1C1的外接球的表面积为(  )
A.16πB.$2\sqrt{3}$C.πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ax2+bx(a,b为常数且a≠0)满足条件f(1+x)=f(1-x),且方程f(x)=x有相等实根.
f(x)的解析式为f(x)=-$\frac{1}{2}$x2+x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在广雅中学“十佳学生”评选的演讲比赛中,如图是七位评委为某学生打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的众数和中位数分别为(  )
A.85,85B.84,86C.84,85D.85,86

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,设a,b,c分别是角A,B,C所对边的边长,且直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,则△ABC一定是(  )
A.锐角三角形B.等腰三角形
C.直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)若复数z1=a+i,z2=1-i(i为虚数单位),且z1-z2为纯虚数,求实数a的值.
(2)已知i是虚数单位,若复数z满足(1+i)z=2-i,求|z+i|,并求出复数$\frac{1+i}{z}$的虚部.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,过抛物线${C_1}:{x^2}=2py$上的一点Q与抛物线${C_2}:{x^2}=-2py$相切于A,B两点.若抛物线${C_1}:{x^2}=2py$的焦点F1到抛物线${C_2}:{x^2}=-2py$的焦点F2的距离为$\frac{1}{2}$
(Ⅰ)求抛物线C1的方程;
(Ⅱ)求证:直线AB与抛物线C1相切于一点P.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数z=$\frac{2i}{1-i}$(i是虚数单位),则|z|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步练习册答案