精英家教网 > 高中数学 > 题目详情
1.若向量$\overrightarrow{a}$=(cosα,1),$\overrightarrow{b}$=(1,2tanα),且$\overrightarrow{a}∥\overrightarrow{b}$,则sinα=$\frac{1}{2}$.

分析 根据平面向量平行(共线)的坐标表示,列出方程,求出sinα的值.

解答 解:∵向量$\overrightarrow{a}$=(cosα,1),$\overrightarrow{b}$=(1,2tanα),且$\overrightarrow{a}∥\overrightarrow{b}$,
∴cosα•2tanα-1×1=0,
即2sinα=1,
∴sinα=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了平面向量平行(共线)的坐标表示与运算问题,也考查了同角的三角函数的关系与应用问题,
是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在三棱柱ABC-A1B1C1中侧棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC-A1B1C1的体积为3,则三棱柱ABC-A1B1C1的外接球的表面积为(  )
A.16πB.$2\sqrt{3}$C.πD.32π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)若复数z1=a+i,z2=1-i(i为虚数单位),且z1-z2为纯虚数,求实数a的值.
(2)已知i是虚数单位,若复数z满足(1+i)z=2-i,求|z+i|,并求出复数$\frac{1+i}{z}$的虚部.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,过抛物线${C_1}:{x^2}=2py$上的一点Q与抛物线${C_2}:{x^2}=-2py$相切于A,B两点.若抛物线${C_1}:{x^2}=2py$的焦点F1到抛物线${C_2}:{x^2}=-2py$的焦点F2的距离为$\frac{1}{2}$
(Ⅰ)求抛物线C1的方程;
(Ⅱ)求证:直线AB与抛物线C1相切于一点P.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{ax+3-4a,x<1}\\{{x}^{2}-ax,x≥1}\end{array}\right.$.
(Ⅰ)若a=3,则m取何值时y=f(x)的图象与直线y=m有唯一的公共点?
(Ⅱ)若函数f(x)在R上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设命题甲:关于x的不等式x2+2ax+1>0对一切x∈R恒成立,命题乙:对数函数y=log(4-2a)x在(0,+∞)上递减,那么甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.邢台一中高一某班共70人,其中39人喜欢体育课,28人喜欢音乐课,8人对这两个课程都不喜欢,则喜欢体育课但不喜欢音乐课的人数为(  )
A.23B.34C.5D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数z=$\frac{2i}{1-i}$(i是虚数单位),则|z|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线l1、l2的斜率k1、k2是方程6x2+x-1=0的两根,则l1到l2的角是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{4}$或$\frac{π}{2}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

同步练习册答案