【题目】在平面直角坐标系中,已知点A(0,0),B(4,3),若A,B,C三点按顺时针方向排列构成等边三角形ABC,且直线BC与x轴交于点D.
(1)求cos∠CAD的值;
(2)求点C的坐标.
【答案】
(1)解:设∠BAD=α,∠CAD=β,且AB=5,
由三角函数的定义得 , ,
故cosβ=cos(60°﹣α)═ ,
即
(2)解:设点C(x,y).
由(1)知sinβ=sin(60°﹣α)= ,
因为AC=AB=5,
所以 , ,
故点 .
【解析】(1)由题意画出图象,设∠BAD=α、∠CAD=β,由三角函数的定义求出cosα、sinα的值,由β=60°﹣α和两角差的余弦函数求出cosβ的值,可得答案;(2)设点C(x,y),由(1)和两角差的正弦函数求出sinβ,由三角函数的定义求出x和y,可得答案.
【考点精析】根据题目的已知条件,利用两角和与差的余弦公式和两角和与差的正弦公式的相关知识可以得到问题的答案,需要掌握两角和与差的余弦公式:;两角和与差的正弦公式:.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xe2x﹣lnx﹣ax.
(1)当a=0时,求函数f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范围;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定圆,定直线,过的一条动直线与直线相交于,与圆相交于, 两点, 是中点.
(Ⅰ)当与垂直时,求证: 过圆心.
(Ⅱ)当,求直线的方程.
(Ⅲ)设,试问是否为定值,若为定值,请求出的值;若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:和点,P是圆上一点,线段BP的垂直平分线交CP于M点,则M点的轨迹方程为______;若直线l与M点的轨迹相交,且相交弦的中点为,则直线l的方程是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3﹣bx2+cx+b﹣a(a>0).
(1)设c=0. ①若a=b,曲线y=f(x)在x=x0处的切线过点(1,0),求x0的值;
②若a>b,求f(x)在区间[0,1]上的最大值.
(2)设f(x)在x=x1 , x=x2两处取得极值,求证:f(x1)=x1 , f(x2)=x2不同时成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣(a+2)x+alnx,其中常数a>0.
(Ⅰ)当a>2时,求函数f(x)的单调递增区间;
(Ⅱ)设定义在D上的函数y=h(x)在点P(x0 , h(x0))处的切线方程为l:y=g(x),若 >0在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com