精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,0<x<2}\\{{{(\frac{2}{3})}^x}+\frac{5}{9},x≥2}\end{array}}\right.$.若函数g(x)=f(x)-k有两个不同的零点,则实数k的取值范围是$(\frac{5}{9},1)$.

分析 由题意可得函数f(x)的图象与直线y=k有二个不同的交点,结合图象求出实数k的取值范围.

解答 解:由题意可得函数f(x)的图象与直线y=k有二个不同的交点,如图所示:
故实数k的取值范围是$(\frac{5}{9},1)$,
故答案为$(\frac{5}{9},1)$.

点评 本题主要考查函数的零点与方程的根的关系,体现了化归与转化、数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知点P在直线$l:\sqrt{3}x-y+2=0$上,点Q在圆C:x2+y2+2y=0上,则P、Q两点距离的最小值为$\frac{1}{2}$   .

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在棱长为2的正方体ABCD-A1B1C1D1中,M是棱A1D1的中点,过C1,B,M作正方体的截面,则这个截面的面积为(  )
A.$\frac{3\sqrt{5}}{2}$B.$\frac{3\sqrt{5}}{8}$C.$\frac{9}{2}$D.$\frac{9}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知离心率是$\sqrt{5}$的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点与抛物线y2=20x的焦点重合,则该双曲线的标准方程为$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设全集U={1,2,3,4},集合A={x|x2-5x+4<0,x∈Z},则∁UA={1,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=sin$\frac{π}{5}$,b=log${\;}_{\sqrt{2}}$$\sqrt{3}$,c=($\frac{1}{4}$)${\;}^{\frac{2}{3}}$,则(  )
A.a<c<bB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆E的中心为原点O,焦点在x轴上,E上的点与E的两个焦点构成的三角形面积的最大值为12,直线4x+5y+12=0交椭圆于E于M,N两点.设P为线段MN的中点,若直线OP的斜率等于$\frac{4}{5}$,则椭圆E的方程为$\frac{x^2}{25}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i为虚数单位,则复数$\frac{1}{1+i}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“x2+5x-6>0”是“x>2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案