精英家教网 > 高中数学 > 题目详情

以下四个命题中,真命题的个数是
①若p∨q为假命题,则p,q均为假命题;
②命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”;
③命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1≥0”;
④在△ABC中,A<B是sinA<sinB的充分不必要条件.


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
C
分析:①“或”命题的判断方法是:当p,q两个命题有一个命题是真命题时,p∨q为真命题;当p,q两个命题都是假命题时,p∨q为假命题.据此可以判断出①是真命题.
②由命题“若p,则q”的逆否命题是“若¬q,则¬p”不难判断出②是真命题.
③根据命题“?x∈R,结论p成立”的否定是“?x∈R,结论p的反面成立”可知③是真命题.
④在△ABC中,A<B??sinA<sinB,据此可知:在△ABC中,A<B是sinA<sinB的充要条件.
解答:①因为“当p,q两个命题都是假命题时p∨q为假命题”,所以由已知“p∨q为假命题”可知:p,q均为假命题,所以①是真命题;
②由命题“若p,则q”的逆否命题是“若¬q,则¬p”可知:命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”是真命题;
③根据命题“?x∈R,结论p成立”的否定是“?x∈R,结论p的反面成立”可知命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1≥0”是真命题;
④∵sinA-sinB=,在△ABC中,∵0<A+B<π,∴,∴cos>0;
由0<A<B<π,得,∴,∴sinA-sinB<0.反之亦成立.因此,在△ABC中,A<B是sinA<sinB的充要条件.故④是假命题.
故①②③是真命题,应选C.
点评:本题考查了复合命题与特称命题的真假,掌握好有关基础知识及判断方法是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下四个命题中,真命题的个数是(  )
①命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”;
②若p∨q为假命题,则p、q均为假命题;
③命题p:存在x∈R,使得x2+x+1<0,则-p:任意x∈R,都有x2+x+1≥0
④在△ABC中,A<B是sinA<sinB的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题中,真命题的个数有(  )
(1)?x∈R,x2+3≥0;
(2)?x∈N,x2>0;
(3)?x∈Z,使x5<1;
(4)?x∈Q,x2=3.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题中,真命题的个数是(  )
①若p∨q为假命题,则p,q均为假命题;
②命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”;
③命题“?x∈R,使得x2+x+1<0”的否定是“?x∈R,都有x2+x+1≥0”;
④在△ABC中,A<B是sinA<sinB的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区一模)以下四个命题中,真命题的个数为(  )
①集合{a1,a2,a3,a4}的真子集的个数为15;
②平面内两条直线的夹角等于它们的方向向量的夹角;
③设z1,z2∈C,若
z
2
1
+
z
2
2
=0
,则z1=0且z2=0;
④设无穷数列{an}的前n项和为Sn,若{Sn}是等差数列,则{an}一定是常数列.

查看答案和解析>>

科目:高中数学 来源:闸北区一模 题型:单选题

以下四个命题中,真命题的个数为(  )
①集合{a1,a2,a3,a4}的真子集的个数为15;
②平面内两条直线的夹角等于它们的方向向量的夹角;
③设z1,z2∈C,若
z21
+
z22
=0
,则z1=0且z2=0;
④设无穷数列{an}的前n项和为Sn,若{Sn}是等差数列,则{an}一定是常数列.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案