精英家教网 > 高中数学 > 题目详情
设S、V分别表示面积和体积,如△ABC面积用S△ABC表示,三棱锥O-ABC的体积用VO-ABC表示.对于命题:如果O是线段AB上一点,则|
OB
|•
OA
+|
OA
|•
OB
=
0
.将它类比到平面的情形是:若O是△ABC内一点,有S△OBC
OA
+S△OCA
OB
+S△OBA
OC
=
0
.将它类比到空间的情形应该是:若O是三棱锥A-BCD内一点,则有______.
由平面图形的性质类比猜想空间几何体的性质,
一般的思路是:点到线,线到面,或是二维变三维,面积变体积;
由题目中点O在三角形ABC内,则有结论S△OBC
OA
+S△OAC
OB
+S△OAB
OC
=
0

我们可以推断VO-BCD
OA
+VO-ACD
OB
+VO-ABD
OC
+VO-ABC
OD
=
0

故答案为:VO-BCD
OA
+VO-ACD
OB
+VO-ABD
OC
+VO-ABC
OD
=
0
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若直线l与x、y轴分别交于A(a,0),B(0,b),ab≠0,则直线l的截距式方程为
x
a
+
y
b
=1
,若平面α与x、y、z轴分别交于A(a,0,0),B(0,b,0),C(0,0,c),abc≠0,则平面α的截距式方程为
x
a
+
y
b
+
z
c
=1
;由点P(x0,y0)到直线Ax+By+C=0的距离d=
|Ax0+By0+C|
A2+B2
类比到空间有:点M(x0,y0,z0)到平面Ax+By+Cz+D=0的距离d=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则
S1
S2
=
1
4
,推广到空间可以得到类似结论;已知正四面体P-ABC的内切球体积为V1,外接球体积为V2,则
V1
V2
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

法国数学家费马观察到221+1=5222+1=17223+1=257224+1=65537都是质数,于是他提出猜想:任何形如22n+1(n∈N*)的数都是质数,这就是著名的费马猜想.半个世纪之后,善于发现的欧拉发现第5个费马数225+1=4294967297=641×
6
700417
不是质数,从而推翻了费马猜想,这一案例说明(  )
A.归纳推理,结果一定不正确
B.归纳推理,结果不一定正确
C.类比推理,结果一定不正确
D.类比推理,结果不一定正确

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下面给出了关于复数的四种类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由向量a的性质|
a
|2=
a
2类比得到复数z的性质|z|2=z2
③方程ax2+bx+c=0(a,b,c⊆R)有两个不同实数根的条件是b2-4ac>0可以类比得到:方程az2+bz+c=0(a,b,c⊆C)有两个不同复数根的条件是b2-4ac>0;
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比错误的是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,(其中
(1)求
(2)试比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察以下两个等式:⑴; ⑵,归纳其特点可以获得一个猜想是:                 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察下列各式9-1=8,16-4=12,25-9=16,36-16=20…,这些等式反映了正整数间的某种规律,设n表示正整数,用关于n的等式表示为            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数是定义在上的奇函数,且的图像关于直线对称,则

查看答案和解析>>

同步练习册答案