精英家教网 > 高中数学 > 题目详情
在△ABC中,已知cosA=
4
5
,sinB=
12
13
,则cosC=(  )
分析:在三角形中根据所给A和B角的三角函数值,求出A的正弦值和B的余弦值,根据A+B+C=180°,用诱导公式求出C的余弦值,解题过程中注意B的余弦值有两个,根据条件舍去不合题意的结果,利用两个角的和的余弦公式得到结果.
解答:解:∵cosA=
4
5
,A∈(0,π),
∴sinA=
3
5

∵sinB=
12
13
,,B∈(0,π),
∴cosB=±
5
13

当∠B是钝角时,A与B两角的和大于π,
∴cosB=
5
13

∴cosC=-cos(A+B)=
16
65

故选A
点评:本题考查三角形内角的关系,用诱导公式和同角三角函数之间的关系解决问题,本题是一个易错题,易错的地方是角B的余弦值,解题时往往忽略三角形内角和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知c=2acosB,则△ABC为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知c=10,A=45°,C=30°,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知c=
6
,A=45°,a=2,则B=
75°或15°
75°或15°

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知c=
3
,b=1,B=30°
,求角A.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知c=
3
,b=1,B=30°

(1)求出角C和A;
(2)求△ABC的面积S;
(3)将以上结果填入下表.
  C A S
情况①      
情况②      

查看答案和解析>>

同步练习册答案