精英家教网 > 高中数学 > 题目详情
口袋中有3个白球,4个红球,每次从口袋中任取一球,如果取到红球,那么继续取球,如果取到白球,就停止取球,记取球的次数为X.
(I)若取到红球再放回,求X不大于2的概率;
(II)若取出的红球不放回,求X的概率分布与数学期望.
【答案】分析:(Ⅰ)由,由此能求出X不大于2的概率.
(Ⅱ)由题设知X可能取值为1,2,3,4,5,分别求出P(X=1),P(X=2),P(X=3),P(X=4),P(X=5)的值,由此能求出X的概率分布列和X的数学期望.
解答:解:(Ⅰ)∵
; (4分)
(Ⅱ)∵X可能取值为1,2,3,4,5,




P(X=5)==
∴X的概率分布列为:
X12345
P
(7分)

答:X的数学期望是2. (10分)
点评:本题考查离散型随机变量的概率分布列和数学期望,是中档题.解题时要认真审题,仔细解答,注意概率知识的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

口袋中有2个白球和4个红球,现从中随机地不放回连续抽取两次,每次抽取1个,则:
(1)第一次取出的是红球的概率是多少?
(2)第一次和第二次都取出的是红球的概率是多少?
(3)在第一次取出红球的条件下,第二次取出的是红球的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

口袋中有3个白球,4个红球,每次从口袋中任取一球,如果取到红球,那么继续取球,如果取到白球,就停止取球,记取球的次数为X.
(I)若取到红球再放回,求X不大于2的概率;
(II)若取出的红球不放回,求X的概率分布与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

口袋中有3个白球,4个红球,每次从口袋中任取一球,如果取到红球,那么继续取球,如果取到白球,就停止取球,记取球的次数为X.
(I)若取到红球再放回,求X不大于2的概率;
(II)若取出的红球不放回,求X的概率分布与数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

口袋中有3个白球,4个红球,每次从口袋中任取一球,如果取到红球,那么继续取球,如果取到白球,就停止取球,记取球的次数为X.
(I)若取到红球再放回,求X不大于2的概率;
(II)若取出的红球不放回,求X的概率分布与数学期望.

查看答案和解析>>

同步练习册答案