精英家教网 > 高中数学 > 题目详情

已知函数f(x)=|x2-2x-1|若1>a>b,f(a)=f(b),则u=(b-a)3-3(a2+b2)+6ab+1的范围是


  1. A.
    (1,1+数学公式
  2. B.
    [-1,3]
  3. C.
    [0,5)
  4. D.
    [0,2)
B
分析:先化简函数u=(b-a)3-3(a2+b2)+6ab+1=(b-a)3-3(b-a)2+1,再判断b-a的取值范围,从而可得结论.
解答:f(x)=|x2-2x-1|=|(x-1)2-2|,图象是一个对称轴为x=1的抛物线,把x轴下方的图形关于x轴翻折上去,
设这个图形与x轴交点分别为x1,x2(x1<x2
那么在x1<x<x2,f(x)有最大值,在x=1时取得,f(1)=2
解方程 f(x)=|x2-2x-1|=2,可以算出x=-1或1或3
∵1>a>b,f(a)=f(b),
∴-1<b<a<1,a2+2a-1<0,b2+2b-1>0
∵u=(b-a)3-3(a2+b2)+6ab+1=(b-a)3-3(b-a)2+1
∴只需判断b-a的取值范围,
∵-1<b<0<a<1,-(a2+2a-1)=b2+2b-1
∴(a+1)2+(b+1)2=4
设a+1=2cosα,b+1=2sinα(0<α<
∴b-a=2sin(α-
∴-2<b-a<0
考查函数y=x3-3x+1在(-2,0)的值域
求导函数可得y′=3x2-3
令y′>0,可得x<-1或x>1;令y′<0,可得-1<x<1
∴函数在x=-1处取得极大3,在x=-2处取得极小值为-1
∴u=(b-a)3-3(a2+b2)+6ab+1的范围是[-1,3]
故选B
点评:本题考查函数的性质,考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案