精英家教网 > 高中数学 > 题目详情
设α,β,γ为平面,m,n为直线,则m⊥β的一个充分条件是(  )
A、α⊥β,α∩β=n,m⊥n
B、α∩γ=m,α⊥γ,β⊥γ
C、α⊥β,β⊥γ,m⊥α
D、n⊥α,n⊥β,m⊥α
考点:必要条件、充分条件与充要条件的判断
专题:空间位置关系与距离
分析:根据面面垂直的判定定理可知选项A是否正确,根据平面α与平面β的位置关系进行判定可知选项B和C是否正确,根据垂直于同一直线的两平面平行,以及与两平行平面中一个垂直则垂直于另一个平面,可知选项D正确
解答: 解:对于选项A:α⊥β,α∩β=n,m⊥n,根据面面垂直的判定定理可知,缺少条件m?α,故不正确;
对于选项B:α∩γ=m,α⊥γ,β⊥γ,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;
对于选项C:α⊥β,β⊥γ,m⊥α,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;
对于选项D:因为n⊥α,n⊥β,所以α∥β,又因为m⊥α,所以m⊥β.正确,
故选:D.
点评:本题主要考查空间直线和平面位置关系的判断,根据相应的判定定理和性质定理是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为(  )
A、
2
+
3
B、
2
C、
2
+
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}满足a1=
1
2
,an+1=
1+an
1-an
(n∈N+),则该数列的前2014项的乘积a1•a2•a3•…•a2014等于(  )
A、3
B、1
C、
3
2
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2msinxcosx+2
2
cos2x-
2
(m>0)的最大值为2.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,若f(
A
2
-
π
8
)+f(
B
2
-
π
8
)=4
6
sinAsinB,且C=
π
3
,c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(x+2013)(x-2014)的图象与x轴、y轴有3个不同的交点,有一个圆恰经过这三个点,则此圆与坐标轴的另一个交点的坐标是(  )
A、(0,
1
2
B、(0,1)
C、(0,
2013
2014
D、(0,
2014
2013

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(
π
3
+x)cos(
π
3
-x),g(x)=
1
2
sin2x-
1
4

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[
19π
24
,π]时,求函数h(x)=f(x)-g(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
π
2
+x)cos(
π
2
-x),给出下列四个说法:
①若f(x1)=-f(x2),则x1=-x2;  ②f(x)的最小正周期是2π;
③f(x)在区间[-
π
4
π
4
]上是增函数; ④f(x)的图象关于直线x=
4
对称.
其中正确说法的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为R,A={x|log
1
2
x>-1},B={x|x>1},则A∩(∁RB)=(  )
A、(-∞,1]
B、(0,1]
C、(
1
2
,1]
D、ϕ

查看答案和解析>>

科目:高中数学 来源: 题型:

长度为4的线段MN的两端点M、N分别在直线y=
2
x,y=-
2
x上运动,则线段MN的中点P的轨迹方程为
 

查看答案和解析>>

同步练习册答案