精英家教网 > 高中数学 > 题目详情
已知f(x)=x2-x-6,g(x)=bx-10
(1)若f(x)>0,求x取值范围
(2)设f(x)>g(x)对一切实数x恒成立,试确定b的取值范围.
【答案】分析:(1)f(x)=x2-x-6,f(x)>0,知x2-x-6>0,由此能求出f(x)>0时x取值范围.
(2)由f(x)=x2-x-6,g(x)=bx-10,f(x)>g(x)对一切实数x恒成立,知x2-x-6-bx+10=x2-(1+b)x+4>0的解集为R,由此能求出b的取值范围.
解答:解:(1)∵f(x)=x2-x-6,f(x)>0,
∴x2-x-6>0,
∵x2-x-6=0的解为x1=-2,x2=3,
∴f(x)>0时,x取值范围是{x|x<-2,或x>3}.
(2)∵f(x)=x2-x-6,g(x)=bx-10,
f(x)>g(x)对一切实数x恒成立,
∴x2-x-6-bx+10=x2-(1+b)x+4>0的解集为R,
∴△=[-(1+b)]2-4×1×4<0,
即b2+2b-15>0,
解得b<-5,或b>3.
故b的取值范围是(-∞,-5]∪[3,+∞).
点评:本题考查一元二次不等式的解法及其应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+b(a,b∈R的定义域为[-1,1].
(1)记|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的M=
1
2
时,f(x)
的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+x+1,则f(
2
)
=
 
;f[f(
2
)
]=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2x,数列{an}满足a1=3,an+1=f′(an)-n-1,数列{bn}满足b1=2,bn+1=f(bn).
(1)求证:数列{an-n}为等比数列;
(2)令cn=
1
an-n-1
,求证:c2+c3+…+cn
2
3

(3)求证:
1
3
1
1+b1
+
1
1+b2
+…+
1
1+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-x+k,若log2f(2)=2,
(1)确定k的值;
(2)求f(x)+
9f(x)
的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+(a+1)x+lg|a+2|(a≠-2,a∈R),
(Ⅰ)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(Ⅱ)若f(x)和g(x)在区间(-∞,(a+1)2]上都是减函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,比较f(1)和
16
的大小.

查看答案和解析>>

同步练习册答案