精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=cos(ωx+φ)的部分图象如图,则f(0)=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}+\sqrt{6}}{4}$D.$\frac{\sqrt{3}}{2}$

分析 根据函数的图象求出解析式,再计算f(0)的值.

解答 解:由函数的图象可得函数的周期为
T=$\frac{2π}{ω}$=4×($\frac{π}{3}$-$\frac{π}{12}$),
解得ω=2,
∴f(x)=cos(2x+φ),
又当x=$\frac{π}{12}$时,f(x)=cos(2×$\frac{π}{12}$+φ)=1,
解得φ=-$\frac{π}{6}$+2kπ,k∈Z,
∴f(x)=cos(2x-$\frac{π}{6}$),
∴f(0)=cos(-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$.
故选:D.

点评 本题考查了根据余弦函数的图象求出解析式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2x2-4x+a,g(x)=logax(a>0且a≠1).
(1)若函数f(x)在[-1,3m]上不具有单调性,求实数m的取值范围;
(2)若f(1)=g(1)
①求实数a的值;
②设t1=$\frac{1}{2}$f(x),t2=g(x),t3=2x,当x∈(0,1)时,试比较t1,t2,t3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x2<1},B=x|2x>$\sqrt{2}\}$,则A∩B=(  )
A.$(-\frac{1}{2},\frac{1}{2})$B.$(0,\frac{1}{2})$C.$(\frac{1}{2},1)$D.$(-\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,角A,B,C的对边分别为a,b,c,若$\frac{a-c}{b}=\frac{a-b}{a+c}$,则角C等于(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若复数z满足i(1-z)=2-i,则z的实部为(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.数列{an}的前n项和为Sn,且a1=1,Sn+1=3Sn+n+1,n∈N*,则{an}的通项公式an=$\frac{{3}^{n}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\sqrt{3}$sin2x-cos2x-m在[0,$\frac{π}{2}$]上有两个零点,则m的取值范围是(  )
A.(1,2)B.[1,2]C.(1,2]D.[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-ax-1.
(1)判断函数f(x)的单调性;
(2)若g(x)=ln(ex-1)-lnx,当x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)是R上的奇函数,且f(1)=a,若对任意x∈R,均有f(x+2)=f(x),则a的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案