精英家教网 > 高中数学 > 题目详情
已知抛物线Σ1y=
1
4
x2
的焦点F在椭圆Σ2
x2
a2
+
y2
b2
=1
(a>b>0)上,直线l与抛物线Σ1相切于点P(2,1),并经过椭圆Σ2的焦点F2
(1)求椭圆Σ2的方程;
(2)设椭圆Σ2的另一个焦点为F1,试判断直线FF1与l的位置关系.若相交,求出交点坐标;若平行,求两直线之间的距离.
(1)抛物线y=
1
4
x2
即x2=4y的焦点F(0,1),
由题意可得
0
a2
+
1
b2
=1
,解得b=1,
切线l的斜率k=y/=
1
2
x|x=2=1

∴切线l方程为y-1=x-2,即x-y-1=0,
令y=0,解得x=1.∴焦点F2(1,0),即c=1.
a=
b2+c2
=
2

椭圆Σ2的方程为
x2
2
+y2=1

(2)由(1)得F1(-1,0),
直线FF1的方程为
y-0
1-0
=
x-(-1)
0-(-1)
,即x-y+1=0,
kFF1=k=1,且F1(-1,0)不在直线l上,
∴直线FF1l,
FF1与l之间的距离即为F(0,1)到直线l的距离d=
|0-1-1|
12+12
=
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于点N,过点N的切线交CA的延长线于P.
(1)求证:;
(2)若⊙O的半径为,OA=OM,求MN的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有一块直角三角形木板,如图所示,∠C=90°,AB=5 cm,BC=3 cm,AC=4 cm,根据需要,要把它加工成一个面积最大的正方形木板,设计一个方案,应怎样裁才能使正方形木板面积最大,并求出这个正方形木板的边长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线y2=-x与直线y=k(x+1)相交于A、B两点.
(1)求证:OA⊥OB;
(2)当△OAB的面积等于
10
时,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)

(1)若椭圆的长轴长为4,离心率为
3
2
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的左右焦点F1,F2的坐标为(-4,0)与(4,0),离心率e=2.
(1)求双曲线的方程;
(2)已知椭圆
x2
36
+
y2
20
=1
,点P是双曲线与椭圆两曲线在第一象限的交点,求|PF1|•|PF2|的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两点A(-2,0),B(2,0),直线AM、BM相交于点M,且这两条直线的斜率之积为-
3
4

(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆(x-1)2+y2=r20<r<
3
2
)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.求△OQR的面积的最大值(其中点O为坐标原点).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,是等腰三角形,是底边延长线上一点,
,则腰长=        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(选修4-1:几何证明选讲)如图,PA是圆O的切线,切点为A,PO交圆O于B,C两点,,则=_________.

查看答案和解析>>

同步练习册答案