精英家教网 > 高中数学 > 题目详情
7.如图中所示的程序框图,输出S的表达式为(  )
A.$\frac{1}{99}$B.$\frac{1}{1+2+3+…+99}$C.$\frac{1}{100}$D.$\frac{1}{1+2+3+…+100}$

分析 根据程序框图,进行模拟计算即可.

解答 解:第一次循环,i=1,S=0,i<100,S=0+1=1,i=2,
第二次循环,i=2,S=1,i<100,S=1+2,i=3,
第三次循环,i=3,S=1+2,i<100,S=1+2+3,i=4,
则依次循环,
当第99次循环,i=99,S=1+2+…+98,i<100,S=1+2+3+…+99,i=100,
当第100次循环,i=100,S=1+2+…+98+99,i<100不成立,程序终止,输出S=$\frac{1}{S}$=$\frac{1}{1+2+3+…+99}$,
故选:B

点评 本题主要考查程序框图的识别和判断,根据条件进行模拟计算是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设点M的柱坐标为($\sqrt{2}$,$\frac{5π}{4}$,$\sqrt{2}$),则其直角坐标是$(-1,-1,\sqrt{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知不等式x2+px+1>2x+p,当|p|≤2时恒成立,则实数x的取值范围是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等差数列{an}中,a1=1,a5=-3;
(1)求数列{an}的通项公式;
(2)若数列{an}的前n项和Sn=-44,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.i为虚数单位,则($\frac{1+i}{1-i}}$)2016=(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex,g(x)=lnx+1,
(1)求函数h(x)=f(x-1)-g(x)在区间[1,+∞)上的最小值;
(2)已知1≤y<x,求证:ex-y-1>lnx-lny;
(3)设H(x)=(x-1)2f(x),在区间(1,+∞)内是否存在区间[a,b](a>1),使函数H(x)在区间[a,b]的值域也是[a,b]?请给出结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),$\overrightarrow{a}$与$\overrightarrow{b}$之间有关系|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|,其中k>0.
(1)用k表示$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)求$\overrightarrow{a}$•$\overrightarrow{b}$的最小值,并求此时$\overrightarrow{a}$•$\overrightarrow{b}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2016年里约奥运会在巴西里约举行,为了接待来自国内外的各界人士,需招募一批志愿者,要求志愿者不仅要有一定的气质,还需有丰富的人文、地理、历史等文化知识.志愿者的选拔分面试和知识问答两场,先是面试,面试通过后每人积60分,然后进入知识问答.知识问答有A,B,C,D四个题目,答题者必须按A,B,C,D顺序依次进行,答对A,B,C,D四题分别得20分、20分、40分、60分,每答错一道题扣20分,总得分在面试60分的基础上加或减.答题时每人总分达到100分或100分以上,直接录用不再继续答题;当四道题答完总分不足100分时不予录用. 假设志愿者甲面试已通过且第二轮对A,B,C,D四个题回答正确的概率依次是$\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且各题回答正确与否相互之间没有影响.
(Ⅰ) 用X表示志愿者甲在知识问答结束时答题的个数,求X的分布列和数学期 望;
(Ⅱ)求志愿者甲能被录用的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=ex-ax,x∈R.
(1)当a=2时,求曲线f(x)在点(0,f(0))处的切线方程;
(2)在(1)的条件下,求证:f(x)>0;
(3)求证:lnx<x;
(4)a>1时,求函数f(x)在[0,a]上的最大值.

查看答案和解析>>

同步练习册答案