精英家教网 > 高中数学 > 题目详情
6.在△ABC中,A、B、C是三角形的三内角,a,b,c是三内角对应的三边,已知b2+c2-a2=bc
(1)求角A的大小
(2)若sin2A+sin2B=sin2C,求角B的大小.

分析 (1)由余弦定理b2+c2-a2=2bccosA,结合已知化简可求cosA,结合A∈(0,π),可求A.
(2)由已知结合正弦定理可得a,b,c的关系,由勾股定理可求C,结合(1)可求B.

解答 解:(1)由余弦定理有:b2+c2-a2=2bccosA,…(2分)
所以2bccosA=bc,于是cosA=$\frac{1}{2}$,…(4分)
又因为A∈(0,π),所以A=$\frac{π}{3}$…(7分)
(2)由正弦定理有a2+b2=c2,…(9分)
于是△ABC为以角C为直角的直角三角形,…(12分)
所以B=$π-\frac{π}{2}-\frac{π}{3}$=$\frac{π}{6}$…(14分)

点评 本题主要考查余弦定理、正弦定理、勾股定理、三角形内角和定理的应用.解本题的关键是通过余弦定理及题设条件求出cosA的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在一次数学实验中,运用计算器采集到如下一组数据:
x-2.0-1.001.02.03.0
y0.240.5112.023.988.02
则y关于x的函数关系与下列最接近的函数(其中a、b、c为待定系数)是(  )
A.y=a+bxB.y=a+bxC.f(x)=ax2+bD.y=a+$\frac{b}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a,b∈R+,则“(a-1)(b-1)>0”是“logab>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数y=Asin(ωx+φ)+B(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的最大值为2$\sqrt{2}$,最小值为$-\sqrt{2}$,周期为$\frac{2π}{3}$,且图象过点(0,-$\frac{{\sqrt{2}}}{4}$),
(1)这个函数的解析式;
(2)写出函数的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,∠C=90°,CD是斜边上的高,已知CD=60,AD=25,求BD=144.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.cos$\frac{π}{12}$+$\sqrt{3}$sin$\frac{π}{12}$的值为(  )
A.-$\sqrt{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.实系数方程x2+ax+1=0的一根大于0且小于1,另一根大于1且小于2,则a的取值范围是(-$\frac{5}{2}$,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果偶函数f(x)在[-7,-3]上是增函数且最小值是2,那么f(x)在[3,7]上是(  )
A.减函数且最小值是2B..减函数且最大值是2
C.增函数且最小值是2D.增函数且最大值是2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}是公差为d的等差数列,且a5=6.
(1)若d∈N*,其数列{an}中任意连续两项的和仍为数列{an}中的项,求d的值;
(2)若a3>1,且自然数n1,n2,…,nt,…(t∈N*)满足5<n1<n2<…<n2<…,使得a3,a5,an1,…,ant,…成等比数列,求a3的所有可能值.

查看答案和解析>>

同步练习册答案